Did A Quiet Expansion Precede The Big Bang?

A question about the question: It is difficult to know; however, a better question might be,
“Do the dynamics of a quiet expansion deflate the Big Bang?”

Last update: February 16, 2015 (also, small corrections since then)
Sequel: June 5, 2016, This Quiet Expansion Challenges the Big Bang

September 2014: If you think about it, most of the world’s people have never heard of the Big Bang theory (Reference 1 – the cosmological model, not the TV series). Of those who know something about it, a few of us are somewhat dubious, “How can the entire physical universe have originated from a single point about 13.8 billion years ago?” It seems incomplete, like there are major missing parts of the story.

To open a dialogue about this pivotal scientific theory is the reason for these reflections. And, if we are successful, all of us will have re-engaged our ninth grade geometry classes and we will begin to ask a series of “what if” questions about the origins of this universe.

Big Board – little Universe. Some of you are aware of our work within several high school geometry classes (Reference 2) to develop a model called the Big Board-little universe (Reference 3). Possibly you even know a little about the 201+ base-2 exponential notations from the Planck Length to the Observable Universe. It is a study that informally began on December 19, 2011, so most of us have only begun to explore the inner workings of each of the 201+ notations.

Because we believe all things start most simply, the first 60+ notations are potential keys for understanding a rather different model of our universe. These notations (also referred to as clusters, containers, domains, doublings, groups, layers, sets, and steps) have not yet been studied per se within our academic communities (Also, see reference 4). The best guess at this time is that the range of our elementary or fundamental particles begins somewhere between the 60th and the 67th notations.

The simple mathematics (Reference 5) and the simple geometries are a given; the interpretation is wide open.

This little article is an attempt to engage people who are open to new ideas to look at those first 60+ notations. What kinds of what-if questions could we ask? Can we speculate about how geometries could grow from a singularity to a bewildering complex infrastructure within and throughout those first 60+ domains, doublings, layers, notations, and/or steps? What if in these very first steps, there is an ultra-fine structure of our universe that begets the structure of physicality? What would a complexification of geometries give us? Might we call it a quiet expansion? Though we have always been open to suggestions, questions and criticisms, we are now also asking for your insight and help.
___________
Updates of both models are being prepared whereby those first 60+ notations of the Big Board-little universe begin to get some projections to study and debate. Also, another version of the Universe Table (Reference 6) is in preparation to emphasize every notation from 1 to 65. Also, at the time this article was introduced, we initiated a chart of base-2 exponential notations of time from the Planck Time to the Age of the Observable Universe side-by-side with our chart for the Planck Length to the Observable Universe. And, to make this study a bit more robust, we also projected a time to add the other three basic Planck Units — mass, electric charge and temperature. (Note: The very-first rough draft of that work was completed in February 2015.)

Big Bang Up. Most people start time with the Big Bang. Is there a possibility that there are events between Planck Time and the bang (or whatever sounds there were when things became physical somewhere between notations #66 to 67)?

In their 2014 book, Time in Powers of Ten, Natural Phenomena and Their Timescales, Gerard ‘tHooft and Stefan Vandoren of Utrecht University (Reference 7), use base-10 notation and assume there is nothing in the gap between the known time intervals of within theoretical physics and Planck Time.

We are doing a little fact check to see if the authors give those notations from Planck Time any causal qualities. It appears that they were not concerned about those base-10 notations until we pointed them out to them.

The first time period of interest to us is the first 20± base-10 notations which would be the first 67 base-2 notations. What happens between the Planck Units and the emergence of the elementary particles? These are real durations in time. A lot can happen.

We will be exploring this small-scale universe in much greater detail. By the 60th doubling there are quintillions-upon-quintillions of vertices with which to create many possible models. Also, in light of the work to justify the Big Bang theory, there is an abundance of information from all the years of research since the concept was first proposed in 1927 by Georges Lemaître.

Steven Weinberg, the author of The First Three Minutes (Reference 8), begins his journey through the origin of the universe at 1/100th of a second. Our hypothesis is that we can mathematically go back to a much, much smaller duration. We believe that we should start at the Planck Time and multiply it by 2. And, just as the fermion within notation 66 would be the size of a small galaxy compared to the Planck Length, 1/100 of a second between notations 137 and 138 represents an even greater gap of the ignored and unknown. We suspect starting one’s analysis so late misses key critical interactions and correlations (Reference 8b).

We’ve just started to see what the numbers can tell us.

A lot of pre-structuring of the universe could be quietly happening within such a duration (1/100th of a second). Using our most metaphorical, speculative thinking, one could imagine that the actual event within those first sixty notations was a gentle, symphonic unfolding, fully homogeneous and isotropic.* Although we should embrace all the key elements of today’s big bang theory, we should also be constantly asking, “What kinds of geometries would be required within each of the first 60 notations to render these effects?”

Perhaps the universe and our future belong to the geometers.

So, this article is to empower all of us to find the best geometers around the world to engage the Big Board-little universe model within what we call “the really-real small scale universe.” Of course, some of the work has already been done within the study of spheres, tilings, and combinatorial geometries.

If you would like to comment politely, please drop me a quick note (camber-at-bblu.org).

Thank you.

Bruce Camber

* homogeneous Having the same property in one region as in every other region
isotropic Having the same property in all directions.

###

Endnotes and References:

1 A Wikipedia summary of the basic Big Bang theory. As you will see within this Wikipedia article, the basic theory has been highly formulated with a fair amount of scientific evidence. If our rather-naïve, quaint-little challenge to that model is ever to catch some traction, it will have to account for the results of every accepted scientific measurement about the Big Bang theory that has been thoroughly replicated.

2 Is There Order In The Universe? There are nine references within this article and each opens to a page that has been written since the first class on December 19, 2011.

3 This image of the Big Board-little universe is Version 2.0001.

4 This article is our very first attempt to provide a somewhat academic analysis of the work done to date. It was rejected by several academic journals so it was first released within WordPress, then the LinkedIn blog pages, and finally re-released right here.

5 The debate within Wikipedia about the importance of base-2 exponential notation resulted in their rejection of the original article. It was judged to be “original research.” We thought that judgment was just a little silly. The concepts were all out there; these articles were just to organize that data.

6 A WordPress blog page for our emerging UniverseView.

7 This article about the book, Time in Powers of Ten by Gerard t’Hooft and Stefan Vandoren, is the most comprehensive that I could find at this time. If you happened to find a better review, please advise us.

8 An online version of the entire book, The First Three Minutes by Steven Weinberg. There are many reviews, yet this one provides a little counterweight. Weinberg also wrote the forward to Time in Powers of Ten. Gerard t’Hooft (1997) and Steven Weinberg (1979) are Nobel laureates.

A chart showing the correlations between Planck Time and Planck Length at the 136th and 137th notations is here.

9 A WordPress article about very small and very big numbers. There is our initial discussion about the first 65 notations.

Where is the Good in Science, Business, and Religion?

Please note:  Many pages within The Big Board-little universe Project were originally posted on the web within the Small Business School website.  Some links still go back to the original site.  If so, please your back button to return to this page. Thank you.


All three major domains of human activity — Science, Business & Religion — are fraught with travail and have been blemished with the worst of human behavior. Notwithstanding, there is a deep ethical bias within science which is also an essential infrastructure of business, and it is the heart of good religion.

valueschart3

The circular color chart opens the door on the story. This chart seems to represent all the energies,  negative and positive, within our finite universe, including our finite world, and our finite life. Using Cartesian coordinates as the container, here the x-axis (horizontal axis) is the totality of time. The vertical y-axis becomes the totality of space. This work emerged from our earlier discussions about foundations.

These thrusts -the energy and purpose – are the most basic forms/functions of life. Though part of our business formulations for many years, this circular image marks the first time it has been used as a comprehensive valuation structure and the basis for modelling the universe (a very large file, may open slowly).

Above the x-axis are all the constants and universals that define who we are, our life, the arts, sciences, business and religion. Below that x-axis — domains that involve so much of human activity — is the antithesis of Order/Continuity, Relations/Symmetry, and Dynamics/Harmony.

The antithesis of these form/functions create a de facto ethical platform by which we can begin to judge ourselves, our businesses, our religion (including atheism), and our political and social organizations.

Of course, this is a first pass at a complex subject addressed by a relatively simple person trying to make sense of it all. There will be many more updates to come.

An earlier article about the constants and universals anticipates this chart but was prior to the chart’s development. Title: Just what are we to believe about anything?

The first use of the chart in June 2014 was within the article, Is There Order In The Universe?

Tweety
The Big Board-little universe in a horizontally-scroll chart (our current work)

Is There Order In The Universe?

UniverseTable Updated: November 30, 2015
Note: Links open a new tab or window. If any link goes back to Small Business School where it was first posted, use your back button to return here.  All postings are being consolidated within http://bblu.org, the main website for secondary schools, and within http://81018.com, the main site for college, university and research-and-development.

Our high school geometry classes created a simple, mathematically and geometrically-ordered view of the known universe. We also found an inherent geometry for disorder.

Yes, rather unwittingly we backed into developing what we now call our Universe View. We used a very simple logic and math. First, we divided an object by 2 until we were down in the range of the smallest measurement of a length; then we multiplied the object by 2 until we were finally out around the largest-known measurement of a length.

Our work began in December 2011. That simple exercise resulted in measurements which opened paths to challenging facts, rather fun concepts, obviously wild-and-crazy ideas, and truly playful speculations.

Throughout this little article there are many references with links. However, there are just nine primary references to other pages. These links are also at the bottom of the page. Also, please be advised, that this project will always be a work in progress.

1. The Power of 2. There are 201+ base-2 exponential notations (that just means “doublings” or multiplying by 2) starting at the Planck Length, the smallest conceptual measurement of a length in the universe, out to the Observable Universe, the largest possible length. Within a few years we also did the simple multiplication of the Planck Time, side-by-side with the Planck Length, out to the Age of the Universe. Then on February 11, 2015 we posted our very first draft of a table of the basic five Planck Units (with a most-speculative guess regarding temperature).

The number of notations (also known as doublings, domains, clusters, groups, layers, sets or steps) is a fact established by simple mathematicsReference #1 (below) goes to the initial chart of 2011.  Yes, it is just simple mathematics. And, we were quickly informed that there was a precedence for it.

In 1957 a Dutch high school teacher, Kees Boeke, used base-10 (multiplying by 10). He found 40 of the 62 base-10 notations. Yet, we believe Boeke’s work is the very first mathematically-driven Universe View. We were unaware of Kees Boeke at that time our work began. Also, we started with (1) embedded geometries, (2)  the two measurements, Planck Length and Observable Universe, (3) a simple logic based on the concepts of continuity and symmetry, and (4) multiplying by 2 (base-2 exponential notation). It was not just a process of adding and subtracting zeros. Because base-2 is 3.3333+ times more granular than base-10, it is more informative and natural; the geometries create natural symmetries and levels of imperfection for symmetry-making and symmetry-breaking; and, it mirrors the processes in cellular division, the dipole nature of chemical bonding, combinatorics, group theory, and complexification (1 & 2).

2. Inherent Geometries. We were studying tetrahedrons and octahedrons, two of the most simple Platonic solids. We started our project by dividing each edge of a tetrahedron in half. We connected those six new vertices and discovered a half-sized tetrahedron in each of the four corners and an octahedron in the middle.

We did that same process with the octahedron and found six half-sized octahedrons in each of the six corners and a tetrahedron within each of the eight faces (link opens a new window). We did that process of going within about 118 times. On paper, in about 50 steps we were inside the atom; and, rather unexpectedly, within another 68 steps we were in the range of the Planck Length.

We then multiplied our two objects by 2 and within about 91 notations or steps, we were in the range of the Observable Universe. Then, to standardize our emerging model, we began at the Planck Length and multiplied it by 2 until we were at the edges of the known universe. We had some help to calculate the number of notations.  We settled for a range from 201 to 205.1  (Reference 2 – See point #4   within those 15 points).

Because we started with a geometry, we learned ways to tile the universe with that geometry. It is also quite simple. It puts everything within a mathematically-compact relation that over the years has had a wide range of names from the aether (or ether), continuum, firmament, grid, hypostases, matrix, plenum to vinculum. We call it, TOT tilings. The TOT begins with a ratio of two tetrahedrons to one octahedron.  That combination fills three-dimensional space perfectly. Also, there are two-dimensional tilings everywhere within and throughout the TOT tilings! There are many triangular tilings, square tilings, hexagonal tilings and combinations of the three. One of the most simple-yet-fascinating is created by that group of four hexagonal plates within every octahedron. Observing the models, one can readily see how each of those four plates extend as four hexagonal tilings of the universe.  Each is at a 60 degree angle to the other and each group of four shares a common center vertex.

It is all so fascinating, we are now exploring just how useful these models can become.

That tiling is a perfection, however, imperfections were readily discovered. Using just the tetrahedron, we found that not all constructions fit together perfectly. For example, the simple pentastar, a five-tetrahedral cluster, cannot perfectly tile space; it creates gaps.

Those gaps have now been thoroughly documented; yet to the best of our knowledge, Frank & Kaspers were the first to open this discussion in 1958Englishman F.C. Frank was knighted in 1977 for his lifetime of work.

Using simplicity as our guide, we concluded that here is one of the early beginnings of an imperfection.   This shape is created with just five tetrahedrons and seven vertices. We refer to this object as a pentastar.  It has a gap of about 7.36° (7° 21′) or less than 1.5° between each of the ten faces.

There is a quite fascinating warping and weaving between the perfect and imperfect.

By adding just one more tetrahedron to that pentastar cluster, a 2D perfection is created by the hexagonal base of six tetrahedrons.  Then, by adding more tetrahedrons it can become the 20 tetrahedral cluster known as the icosahedron, and then out to the 60 tetrahedral cluster, the Pentakis Dodecahedron.

We dubbed these imperfect figures, squishy geometry; the constructions have considerable play. Yet in more temperate moments, we call this category of figures that do not fit perfectly together, quantum geometry.  At that time, we did not know there is actually a disciple within geometry and theoretical physics defined as such.

3. Numbers and Potential Geometries Gone Wild. By the 10th doubling there are 1024 vertices. Assuming 1 for the Planck Length, there are then 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. The simple aggregation of all notations up to 10th would be 2000+ vertices. Within just the 20th doubling (notation) there are over 1-million vertices, within just the 30th notation over 1-billion, the 40th notation over 1-trillion, and the 50th over a quadrillion vertices. By the 60th notation, a quintillion more vertices are created and that measurement is still below the range of our elementary or fundamental particles.

Imagining all the possible hidden complexities has become a major challenge!

Although this rapid expansion of vertices within each doubling is entirely provocative, it became even greater when we finally followed the insights of Freeman Dyson (Reference #3 – point #11). Dyson is Professor Emeritus, Mathematical Physics and Astrophysics at the Institute for Advanced Studies in Princeton, New Jersey. He said, “Since space has three dimensions, the number of points goes up by a factor eight, not two, when you double the scale.”  On the surface, it is straightforward, yet we are now trying to get the deepest understanding of scaling laws and dimensional analysis to most fully work with Dyson’s comment. Also, we believe that scaling symmetries are necessarily involved with the transitions from one doubling (domain, layer, notation or phase) to the next.

4. Driving Concepts. The simple mathematics provides a basic order and continuity that we have imposed on the universe. The simplest geometries provide a robust range of symmetries and relations. Add time and put these objects in motion, folding and enfolding within each other like a symphony, and we can begin to intuit very special dynamics and a range for harmony (Reference #4).  When those concepts were first written up back in the 1970s, it seemed to describe a perfected state within space and time, but it was too vague. It needed a domain or container within which to work and it seems that this just may be it (opens new window/tab).

5.  Initially called, Big Board-little universe and then, The Universe Table (Reference #5). By September 2013, a class of sixth grade students got involved and a core group of about 40 high school students continued to study this formulation. First, it seemed like an excellent way to visualize the entire universe in a systematic way and on a single piece of paper. Second, as a simple ordering tool, it placed most of the academic disciplines in the right sequence. Mathematics, logic, philosophy, theology and ethics seemed to apply to every notation. An interdisciplinary study called STEM for Science-Technology-Engineering-Mathematics seeks a deeper and more vibrant exploration of all four. This chart readily did that and more. Our chart was developing a special traction. It was working for us.

We then began observing some very simple correlations between notations and let our imaginations work a little overtime.

6. Keys to humanity are in the middle of the Known Universe. Within our range from 201+ to 205+ notations, human sperm is within notation 100, human hair within 101, the thickness of paper (upon which we record our history) 102, and the human egg 103 (Reference #6).

That seems like a concrescence of meaning.

We are just starting to parse the 201+ notations in thirds, fourths, fifths… using musical notation as the analogue and metaphor.

7. The first 60+ notations, doublings, or layers are unchartered. We asked, “What could possibly be there?” To get some ideas, we started going back throughout history and philosophy. We placed Plato’s Forms (Eidos) within the first ten notations. Aristotle’s Ousia (Essence or structure) became the next ten from 11 to 20. Substances were 20-30, Qualities from 30-40, Relations 40-50 and then Systems 50-60. Within Systems we projected a place for The Mind (Reference #7), from the most primitive to the most developed.

Within these first sixty notations, it seems we just might be seeing the basis for isotropy and homogeneity within our little universe. As the domains (doublings, layers, notations, steps) approach he Planck Units, the number of vertices become smaller, and the everything in the universe increasingly shares  some aspect of the systems, relations, qualities, substance and structures, and perhaps everything shares all aspects of the forms. Here is the pre-structure of structure.  Of course, we are just being speculative.

It’s great fun to be speculative, yet we will try not to be too reckless!

“It seems that the cellular automata (of the Wolfram code) belong right within the Forms.” Of course, that’s also a simple guess. We continued, “And within Systems, we have all those academic subjects that have never had a place on a scientific grid or scale of the universe.”

We dubbed this domain “the really-real Small-Scale Universe.”

8. Einstein-Rosen Bridges, Wormholes & Intergalactic Travel The imagination can readily get ahead of facts, yet bridges and tunnels appear everywhere in nature. So, when we partitioned our known universe in thirds, we discovered that elementary particles and atoms began to emerge in the transition area from the first-third, our Small-Scale Universe, to the second-third, our Human-Scale. Well then, what happens in the transition to the third-third, from the Human-Scale to the Large-Scale Universe?

We decided to be wildly speculative.

In the grand scheme of things, the transition from the second-third begins with notations 134 to 138. At Notation 134 you could up on the International Space Stations,  just 218 miles above the earth’s surface. At Notation 137, you would be about 1748 miles up and at Notation 138, about 3500 miles up.

What happens? “Einstein-Rosen!” was the charge. “It’s the beginning of wormholes!”

That raised a few eyebrows. After all, we surely need a shortcut to explore the Large-Scale Universe. So, now we are calling on our leading space entrepreneurs (Reference #8), especially Elon Musk of SpaceX, “Go out looking, but don’t go inside any of those wormholes yet. We all need to be thinking a bit more about their structure.” If we take it as a given that space is derivative of geometry (symmetries), and time derivative of number (continuities), we begin to see the universe quite differently.

Of course, we have far more questions than we have insights so we truly welcome yours.

9. A system for value, thinking, logic, reasoning and more. As you can see, our evolving Universe View was quickly becoming a structure for a rather idiosyncratic style of thinking, reasoning and logic (Reference #9).

The concept of a perfected moment in space-and-time was pushing us to think about order, relations and dynamics in new ways. Continuity, symmetry and harmony were becoming richer than space and time. This marks our first attempt to begin writing about this perception of our interior universe where our numerical-geometrical structure of the universe became its own inherent logic. It wasn’t long before we began thinking about how this structure could also be applied to thinking itself, then reasoning, and so much more. A mentor and friend from long ago, John N. Findlay, might call it an architecture for the thrust or zest for life.

This system seems to have within it many possibilities for seeing wholeness where today information and systems do not cohere, so we are glad to share these skeletal models (including the one just to the left) for your inspection. We hope you find it all as challenging as we have, and that you have enjoyed taking this rather quick tour through this work.

We are in the very early stages of this journey and we welcome your insights, your comments, and your questions. Thank you.

Endnotes, footnotes and references:

  1. The URL for the very first chart of our simple math: http://smallbusinessschool.org/page2851.html
    These pages were to support our attempt to publish a Wikipedia article about base-2 exponential notation from the Planck Length. That article was published in April 2012 but their specialists led by an MIT mathematician deemed it “original research” and it was removed early in May 2012. That was our truly first indication that our simple logic-math-and-geometry had been overlooked by the larger academic community.
  2. An analysis of 15 key points: http://smallbusinessschool.org/page3006.html
  3. Prof. Dr. Freeman Dyson, Professor Emeritus, Mathematical Physics and Astrophysics of the. Institute for Advanced Studies (IAS), Princeton, New Jersey since 1953., author (among hundreds of article and dozens of books)  of Interstellar Transport (Physics Today 1968), Disturbing the Universe (Harper & Row, 1979). This link opens within the IAS website.
  4. The first principles based on the concept of perfection: http://smallbusinessschool.org/page869.html
  5. A ten-step tour of the Big Board-little universe and the Universe Table: http://smallbusinessschool.org/page2990.html
  6. Space Entrepreneurs to Star Wars VII: http://smallbusinessschool.org/page3007.html
  7.  An analysis of the work in progress:   http://smallbusinessschool.org/page3000.html
  8. Belief systems: http://smallbusinessschool.org/page1887.html
  9. The circular chart just above.

More analysis: All these writings are in process. Here are our initial drafts:

There will come an invitation to participate, then perhaps a collaborative exploration of these questions:

15 Key Questions About Our Universe And Us

Prepared by Bruce Camber for five classes of high school geometry students and a sixth-grade class of scientific savants. There are no less than 15 concepts reviewed here. All have been explored within a high school yet have been virtually ignored by the larger academic community. It begs the questions, “Are any of these concepts important? Which should we keep studying and which should be deleted?” And, of course, if we delete any, we need to know why.

TetrahedronStudents have been known to ask a rather key question, i.e., “Can’t you make it easier to understand?

So, in light of the universal pursuit for simplicity, beauty and wholeness, our geometry classes just may have stumbled onto a path where we begin to see all the forces of nature come together in a somewhat simple, beautiful, yet entirely idiosyncratic model. It feels a bit like Alice-in-Wonderland — the entire known universe in 201+ notations or doublings — all tied together with an inherent geometry, an ever-so-simple complexity. The students ask, “Can this somehow be embedded within every thing everywhere?”

#1 Key Question: Is there a deep-seated order within the universe?

Geometry 101: From the Planck Length to the Observable Universe
December 19, 2011: Defining our Parameters and Boundaries

octahedronOver 120 high school students and about twenty 6th graders have divided each of the edges  of a tetrahedron in half.  They connected the new vertices to discover four half-sized tetrahedrons in each of the corners and an octahedron in the middle. They did the same with that octahedron and observed the six half-sized octahedrons in each of the corners and eight tetrahedrons, one in each face. We continued this process mathematically about 116 times until we were in the range of the Planck length. We eventually learned that this process is known as base-2 exponential notation. When we discovered-then-compared our work to that of Kees Boeke (Cosmic View, Holland, 1957), we thought base-2 was much more informative, granular, and natural (as in biological reproduction and chemical bonding) than Boeke’s base-10. Plus, our work began with an inherent geometry, not just a process of adding and subtracting zeros.  More… (opens in new tab/window).

 

#2 What are the smallest and largest possible measurements of a length?

Doublings and Measurement
December 2011: Getting More Results

We had taken those same tetrahedrons with their embedded octahedrons and multiplied them by 2. Within about 90 steps (doublings), we thought we were in the range of the recently-reported findings from Hubble Space Telescope and the Sloan Digital Sky Survey (SDSS III), Baryon Oscillation Spectroscopic Survey (BOSS) measurements (opens in new tab/window) to bring us out to the edges of the observable or known universe. It appeared to us that this perfect conceptual progression of embedded tetrahedrons and octahedrons could readily go from the smallest possible measurement to the largest in less than 209 notations. We decided at the very least it was an excellent way to organize the data in the entire universe.

More questions:  What are the most-simple parameters with which to engage the universe?  Do the geometries (relation/symmetry), base-2 (operations of multiplication or division), and sequence (order/continuity) provide an operational formula for expansion of the operand?

#3  Do these charts in any way reflect the realities within our universe?

 Big Board – little universe and our first Universe Table
2011 -2012SDSS-III-BOSS

We had also develop a big board (1′ by 5 ‘) upon which to display this progression so we could begin inserting and updating examples from the real world within each notation (domain, doubling, or step). To simplify the look and feel of those listings, we also made a much smaller table (8.5″ x 11″) in September 2012.   The very first, very rough board (December 2011): http://smallbusinessschool.org/page2790.html and within a blog (May 2012): http://doublings.wordpress.com/  Then, we developed the Universe Table based on the board: http://utable.wordpress.com/2013/11/01/1/

Another question: What are the necessary relations between adjacent notations?

#4 How do we prioritize data (calculations), information and insight?  What is wisdom?BigBoard8.5.jpg

202.34 to 205.11: From Joe Kolecki to Jean-Pierre Luminet
May 2012: Getting Some Professional Insight and Confirmation

We consulted with Joe Kolecki, a retired NASA scientist involved with the education of school children. He did a calculation for us and found about 202.34 notations from the smallest to the largest (based on the age of the universe).

We had also consulted with Jean-Pierre Luminet, a French astrophysicist and research director for the CNRS (Centre National de la Recherche Scientifique) of the observatory of Paris-Meudon. He calculated 205.11 notations: http://doublings.wordpress.com/2013/07/09/1/#Footnotes See footnote 5 on this page within doublings.wordpress.com.

The nagging question: What are the necessary relations between adjacent notations (or doublings, layers or steps)?

#5 How does each notation build off the prior notation? Is it geometrical?
An Encounter with Wikipedia
April-May 2012: Grasping the New Realities

We wrote it up for Wikipedia to have a place to collaborate and build out the document with other schools and even universities. But, in May 2012, their review group told us that it was original research. Though there was a clear analogue to base-10 notation from Kees Boeke from 1957, an MIT professor, Steven G. Johnson (he reviews entries for Wikipedia) said that it was “original” research. We begrudgingly accepted his critique:
http://bigboardlittleuniverse.wordpress.com/2013/02/26/1/
The simple math: http://doublings.wordpress.com/2013/04/17/60/

#6 What is perfect and what is imperfect?

Pentastar, Icosahedron, Pentakis Dodecahedron

December 2011 to December 2012: One Year of Insights

We then observed some curious things. First, geometries can get messy very quickly. We were using the five Platonic solids. Starting with the tetrahedron, we quickly discovered that these objects rarely fit perfectly together. The pentastar, five tetrahedrons clustered tightly together, do not perfectly tile space, but leave a gap. This gap has been thoroughly documented yet to the best of our knowledge it was first written up by two mineralogists, Frank & Kaspers, in 1958. In its simplicity, we concluded that this was the beginning of imperfections and it extended out to the 20 tetrahedron cluster also known as the icosahedron, and then out to the 60 tetrahedron cluster (just the outer shell), which is called a Pentakis Dodecahedron. We dubbed these figures, “squishy geometry” because you could actual squish the tetrahedrons together. In a more temperate moment, we dubbed this category of figures a bit more appropriately, “quantum geometry.”

#7   What is the Planck Length? Is it a legitimate concept?

Frank Wilczek, Encouragement from an Authority, December 2012

We consulted Prof. Dr. Frank Wilczek (MIT) regarding his many articles in “Physics Today” about the Planck Length. He assured us that it was a good concept and that the Planck Length could be multiplied by 2. We titled our next entry, “Everything Starts Most Simply. Therefore, Might It Follow That The Planck Length Becomes The Next Big Thing? The current state of affairs in the physics of CERN Labs is anything but simple. We figure if we built things up simply, we might gain a few new insights on the nature of things.

#8  Is life a ratio?  Does it begin with Pi and the circumference of a circle?

Steve Waterman’s polyhedra and mathematics
March 2014: Discovering Others Searching the Boundaries

In December 2013, I sent a note around to an online group of mathematicians, mainly geometers; and of those who responded, Steve Waterman had done some truly original, rather-daunting, work that had certain similarities to Max Planck’s work a century earlier. It was not until a lengthy discussion in April 2014 that I began to understand the simplicity and uniqueness of his extensive work. He had emerged with many, if not most, of the 300+ NIST constants, the gold standard of the sciences. He had used constants in a similar way that Max Planck used the speed of light and the gravitational constant to begin his quest for the Planck Length. Waterman provokes the ratios of known constants to come ever so close to the NIST measurements. His math implies an inherent universal wholeness and he does it with a series of “what if” questions. It took me awhile to grasp his fascinating, far-reaching results:
http://watermanpolyhedron.com/abequalsc2.html
http://www.watermanpolyhedron.com/smallFOUR.html

#9 Is there anybody doing mathematics in any way related to these notations?

 Edward Frenkel and his book, “Love & Math: The Heart of Hidden Reality”

In October 2013, Edward Frenkel’s book, “Love & Math: The Heart of Hidden Reality” became part of our picture. Perhaps this remarkable mathematician can shed light on those areas where we all are weakest. We let him know we had his book and would be reading it to answer simple questions, “Why doesn’t anybody care about this construction? What are we missing? Why are people so sure that the fermion and its extended family represent the smallest-possible measurement of a length, especially in the face of the Planck Length? Why shouldn’t we attempt to think of the Mind and mathematics as representations of those steps between the Planck Length and those within the particle families?”

Through Frenkel’s work we have begun to discover the Langlands Program and its progenitors (i.e. Frobenius) and the current work in areas like sheaves, the categorifications of numbers, and the correlation functions. We have begun to learn about the work of other remarkable mathematicians like Grothendieck, Drinfield, Witten, Kapustin, and so many more.

The most important first-impression was that we could begin to discern the transformations from one notation to the next and possibly even discern the very nature of a vertex.

#10   What is a vertex? Are there primary vertices that establish the Planck Unit measurements and secondary scaling vertices?

Over a Quintillion key vertices within just the 60th notation using base-2 exponentiation

Throughout these past 2+ years, we have discerned other simple-yet-interesting mathematical facts.  First, we decided that we should not refer to the Planck Length as a point because it is a rather exact length, so we are giving each vertex a special status and believe we might learn more by understanding Alfred North Whitehead’s concept of pointfree geometries introduced within his book, “Process and Reality.”

Within just the 10th doubling there are 1024 vertices. The simple aggregation of all notations up to 10 would be 2046 vertices. Within just the 20th doubling (notation) alone there are over 1 million vertices. In just 30th notation alone, another one billion-plus vertices are created. Within the 40th notation another trillion-plus vertices. With just the 50th notation, you’ll find over a quadrillion vertices. By the 60th notation, a quintillion more vertices are created. Imagine all the possible hidden complexity!

The expansion of vertices within each doubling has been a challenge for our imaginations and conceptual limitations. Yet, it could be an even greater challenge and far more complex if we were to follow Freeman Dyson’s suggestion. Using base-4 notation for the expansion of the tetrahedrons and base-6 notation for the expansion of the octahedrons, at the 60th notation, there would be a subtotal of 1.329228×1036 for the tetrahedrons and 4.8873678×1046 vertices from the octahedrons. Using simple addition that would be:

488,736,780,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

+                    1,329,228,000,000,000,000,000,000,000,000,000,000,000,000

488,736,780,001,329,228,000,000,000,000,000,000,000,000,000,000,000,000

The base-2 exponentiation is the “simple math” starting point. It is a simple focus on the process called doubling and only accounts for number of times the original Planck Length has been doubled for each notation. If the focus is on objects, after the fourth doubling, there are four expansions to track, base-1 for the sole octahedron within the tetrahedron, base-4 for the tetrahedrons within the tetrahedrons, and base-6 for the octahedrons within the octahedron and base-8 for the tetrahedrons within the octahedron.  Addressing that schema and the results are:

Base-8 tetrahedrons:   1.5324955×1054 units

Base-6 octahedrons in the octahedron:  4.8873678×1046

#11 What are scaling laws and dimensional analysis?

Freeman Dyson

Mon, Oct 22, 2012

Freeman Dyson, in an email to me (for which he gave me permission to share), suggested the following: “Since space has three dimensions, the number of points goes up by a factor eight (scaling laws and dimensional analysis), not two, when you double the scale.” Of course, we felt we had more than enough vertices with which to contend, so we just multiplied by 2, using the simple analogue from biology or chemistry. Yet, we readily acknowledge that his advice could readily open even more doors for new explorations, so this question is raised and another dimension of our work has been set out before us by a sage of our time!

#12 Key Question: Is the inherent structure of the first 60 notations shared by everything in the universe?

January 2013 to today

#12a   January 2013:  Speculations about the first 60 notations

With our simple logic, it seems that with the diversity of particles and the uniqueness of identity, that the structure could continue to expand right up to the 201+ notations.

However, below that emergence of measurable particles, and their aggregate structures, a simple logic would tell us that there is a cutoff point as you go toward the Planck Length where a deep-seated Form (perhaps notations 3-to-10) and Structure (perhaps notations 11-20) might somehow be shared by every thing in the known universe. With vertices rapidly increasing with every doubling, options begin to manifest for types of Substances (possibly notations 21-to-30), then types of Qualities (perhaps notations 31-to-40), then types of Relations (possibly 41 to 50), and finally types of Systems (possibly 51-to-60). What does that mean? How are we to interpret it? It is on our list to continue to ponder.

#12b   February 2013   Literature survey

We’ve thought about this very, very small reality from the first notation to the 60th. Perhaps it is what Frank Wilczek (MIT) calls the Grid and Roger Penrose (Oxford) calls Conformal Cyclic Cosmology. We just call it the Small-Scale Universe. Actually, in deference to one of my early mentors, we call it the “really-real” Small-Scale Universe. And, because we started with simple geometries, our imaginative notions of this part of our universe appear to be historically explored yet relatively unexplored as a current scientific framework. First, we turned to our six sections: Forms (Eidos), Structures (Ousia), Substances, Qualities, Relations, and Systems (The Mind).

Also, picking up on a suggestion by Philip Davis (NIST, Brown), that the sphere is more fundamental than the tetrahedron, we start with a one-dimensional length, the Planck Length. When it doubles, it becomes a two-dimensional sphere. When it doubles again (4), it becomes a three-dimensional sphere with a tetrahedron within it. When it doubles again (8), we see the octahedron within the tetrahedron. When it doubles again (16), we begin to see the four hexagonal plates within the octahedron. We are projecting all these forms-structures, substances-qualities, relations-and-systems are complexifications of the first two vertices within the first doubling. We further project that there is a transitional area between each of the three scales, Small-Scale Universe, Human-Scale Universe, and Large-Scale Universe and each would include somewhere between 67-to-69 notations.

#12c.     Discovering Quanta Magazine

       May 2014

Amplituhedrons, Euler, and geometries mixing within necessary relations with geometries

We discovered the writings of Natalie Wolchover within Quanta Magazine, quantum geometries, and on the work of Andrew Hodges (Oxford), Jacob Bourjaily (Harvard) and Jeremy England (MIT). We believe these young academics are opening important doors so our simple work that began in and around December 2011 has a larger, current scientific context, not just simple mathematics. Within the excitement and continuing evolution of the Langlands programs, we perceive it all in light of defining a science of transformations between notations. We are now pursuing all the primary references for people working within quantum geometries.

The simplest, smallest, largest experiment, albeit a  thought experiment based on logic, the simplest mathematics (base-2 notation and platonic geometry), and the base Planck Units, quickly opened doors to look at this data in a radically new way. It will slowly become the basis for many new science fair projects.  The question is asked, “Could This Be The Smallest-Biggest-Simplest Scientific Experiment?” http://walktheplanck.wordpress.com/2014/03/03/domain/

#13a  October 2013 to February 2014: A National Science Fair Project

Some students wanted to take the project further. Here was an initial entry of one of our brighter students:

http://walktheplanck.wordpress.com/2013/12/03/welcome/

#13b January 2012: Is there a concrescence in the middle?

IUniverse Tables the ratio, 1:2, somehow special? Approximately between 101 and 103, clustered in the middle by the width of a hair, are paper upon which we document our history and the human egg. Perfectly human representations in the middle of this scale became a source for some reflections.

http://walktheplanck.wordpress.com/2013/12/03/c/

#13c   October 2013: Considering the Thirds, 1:3

Between Notation 66-to-67 and from 132-to-134:

The significance of the first third, particularly the transformation from the small scale to the human scale, was obvious — particles and atoms. The last third, the human scale to the large scale, we played with ideas, then made an hypothesis. In a most speculative gesture, turning to the Einstein-Rosen bridges and tunnels, we posited that range as a place to begin looking for wormholes.

http://walktheplanck.wordpress.com/2013/12/03/j/

We are now studying the fourths, fifths, sixths and sevenths… wondering in what ways are there parallels to music. How do things combine, mix, and move together to create a specific thing or a new thing? We began studying the notational ranges defined by simple mathematics and music to see what we could see.

Notational range for The Fourths: 50.6 – 51.3, 101.17 – 102.6, and 151.7 – 153.8 and finally 202.34 – 205.11 Notational range for The Fifths: 40.47 – 41.2, 80.94 – 82.4, 121.41-123.6, 161.86 – 164.8… Notational range for The Sixths: 33.72 – 34.35, 67.44 – 68.70, 101.17 -102.6, 134.89 – 136.95, 168.61 – 171.30… Notational range for The Sevenths: 28.62 – 29.30, 57.24 – 58.60, 86.46 – 87.90, 114.48 – 117.20…

To date, our very cursory, initial observations have not opened up more wild-and-crazy speculations! However, the obvious parallel to music has us thinking about the nature of chord, half notes and ratios (July 2014).

#14 Who are we and where did we come from?
1971-1973: Synectics, Polymorphs, Colloquiums, and more
Continuity-Order, Symmetry-Relations, Harmony-Dynamics

We are products of our experience. In 1971, when I (Bruce Camber) was just 24 years old, though active in the radical-liberal political community, my longstanding intellectual curiosity was the nature of creativity, the processes for problem-solving, the nature of a paradigm, and the stuff of scientific revolutions. At a think tank in Cambridge, I focused on interiority, analogies, empathy, and processes to open pathways to a deeper sense of knowing and insight. Within a Harvard study group, the Philomorphs, I studied basic geometric structures with Arthur Loeb. At Boston University, I was deeply involved with the weekly sessions of the Boston Studies in the Philosophy of Science with Robert S. Cohen, chairman of the Physics Department. It was within this mix, that the form-and-function of a momentary perfected state in space and time was engaged (continuity-order, symmetry-relations, harmony-dynamics). For many years, that formulation drove my studies to the point of ignoring all else. Now, years later, that work continues.

#15 Where are we going?  What is the meaning and value of life?

This Day and beyond   The Derivative Nature of Space and Time

Some of us have come to believe that space is derivative of geometry and time derivative of number… and all things as things are unique ratios between the two. Of course, we continue to ask ourselves, “So? What does that mean and what do we do with it?” And, as you might suspect, we have far more questions than we have insights. We are way out on the edges looking for new meaning in this universe. The inquiring minds of our most inquisitive students, want to go further,”Maybe we can find a path to a multiverse! “

_______________________________________________________________________________
Let’s develop a community of people and schools who are working on this simple structure.  Please let us know if you are interested. Please share your helpful comments.

Science Fiction – Science Fact

If Star Wars VII had communicated a bold new vision
of our scientific potential, the economic, intellectual,
and spiritual revolution have been truly unstoppable.

The film, Gravity, didn’t even attempt to give us a cosmological view.
Interstellar  had good intentions, but got hung up in a blackhole.

BransonMuskAllen Bezos

Our most-visible space entrepreneurs – Richard Branson, Elon Musk, Paul Allen, and Jeff Bezos   (Virgin Galactic, SpaceX , SpaceShipOne of Stratolaunch and Blue Origin respectively) — are each working hard and investing heavily to open new ways to outer space. NASA and a few professors like Carl Sagan once owned the domain. Certainly it has included some of our best science fiction writers. The blockbuster producers of major motion pictures like Star Wars, Star Trek, 2001, A Space Odyssey, Gravity, ET, Contact, and Close Encounters, teased the imaginations of the public, but did very little to teach.

Interstellar was to change the SciFi metaphor.  They surely tried.  They had the best of the best to help shape their narratives, including Cal Tech’s gravitational-black hole expert, Kip Thorne (author, The Science of Interstellar).  But what can we expect when the working concepts of today’s scientific elite still do not include an integrated Universe View? How can we hope for a new model if our old paradigms don’t shift a bit?

New Narratives:   Just think what might have happened if a production like Star WarsVII incorporated iconic storylines where our four space entrepreneurs (pictured above) had a role. Just think what would happen if the best of future science fiction movies built upon each other’s themes and developed a meta-reality which clearly beckoned us all into the future.

New concepts and ideas can be communicated in the drama of a major theatrical production. These four people  could make a huge difference. Educate the public? No, these folks could mesmerize the world.

Let us look at four very simple facts that sound more like science fiction, but these alone truly engender the imagination to see things in new ways:

1. 201+ base-2 exponential notations. That takes us from the smallest possible measurement of a length to the largest; that is from the Planck Length to the Observable Universe. That seems unbelievable, but it is true. Simple math. Add some simple geometries and magic happens. Within our most speculative visions, we ask, “Why not try to apply the work with amplituhedrons (new window) and the Langlands program (new window) as a partial definition for the transformations between notations (layers, domains, doublings, or steps)?”  There is a certain magic that happens when you envision the universe in 205+ steps.  Perhaps it will only be a metaphor or possibly a new intellectual art form. It may be, as the intellectual elites might say, “Not Even Wrong,” but what fun the rest of us can have learning a little about an ordered universe and about the limitations of thought!

2. There is no concurrence about the first 60 notations. These notations are not acknowledged by the general scientific community, so none per se  have been knowingly used experimentally! So, be speculative. Use this domain with its no less than a quintillion vertices to construct primal machines. Be bold. Develop a simple logic to control gravity. Extend it to create enormous reserves of a most basic energy that gives rise to quantum fluctuations. Develop logical-albeit-quite-imaginative constructs that educate and challenge us to understand “Beam me up, Scotty!” Have fun and put down that gun (symbolic or otherwise).

3.    Work the ratios between all 201+ to 202 notations and the natural groupings and sets. That range is naturally divided in half, and then by thirds, fourths, fifths and so on.

Consider the halfway point. Within the 101st notation is the human hair, within the 102nd notation is the width of the piece of paper, within the 103rd notation is the egg (and the sperm is at 100). Yes, there is a concrescence for life in this middle of this definition of the universe.  From here we go on out to discover the remaining 101 to 103+ exponential notations to the Known or Observable Universe.

4.  Consider the potential magic within the thirds. Physical things emerge between notations 67 and 80. That includes all the particles, all the atoms and all the elements of the periodic table. That is the transition from the small scale to the human scale.

Now, consider the transition from the human scale to the large scale. It is highly speculative yet entirely within the scope of a vivid imagination to expect that the Einstein-Rosen tunnels and bridges, commonly known as wormholes (possibly good for inter-galactic travel, just might begin to emerge between notations 136 and 138.  That’s in the range of the two-thirds transition. And, that would put them in the range of 874 to 3500 miles above the earth. The International Space Station is anywhere from 230 to 286 miles above the earth and geosynchronous satellites are around 35,786 kilometers or 22,236 miles above the earth’s equator.

A Dream: Develop a cooperative production studio area that incorporates a space elevator that becomes a major edutainment sector whereby the public can actually begin to participate in the most extraordinary educational scenes of major science fiction productions. Surely, the drama of a meteor shower might be part of it taking scenes directly out of Gravity.

A few scenes from most major films within the science fiction – science fact genre could be readily reused.

Editor’s Notes:  Most of the links stay within the domain of the primary URL displayed above.  Some links go to a Wikipedia reference and open in a new window or tab.  Also, many of these short articles have been duplicated on other sites.  The three primary sites are Small Business School, where the very first reflections about the Big Board-little universe   and its Universe Table were first posted in January 2012.  You will also find these postings in several inter-related WordPress pages and within LinkedIn pages.  The related Facebook and Blogger pages will be included eventually.

Endnotes, footnotes and references:

Could The Planck Length Be The Next Big Thing? Could Planck Time Open A Gateway To The Universe?

Is it true that everything starts most simply?
If it is, then let us be studying the Planck Units.

Please note: This document is subject to updates.  The first draft was posted online in September 2012. There were simple updates in March 2015.

Abstract: Analyze three very simple concepts taken from a high school geometry class, (1) the smallest-and-largest measurement of a length, (2) dividing and multiplying by 2, and (3) nested-embedded-and-meshed geometries. Though initially a simple thought exercise (hardly an experiment), our students quickly developed a larger vision to create a working framework to categorize and relate everything in the known universe. Though appearing quite naïve and overly ambitious in its scope, the work initially began at the Planck Length and proceeded to the Observable Universe in somewhere over 202.34+ base-2 exponential notations. That range of notations is examined and the unique place of the first sixty notations is reviewed. This simple mathematical progression and the related geometries, apparently heretofore not examined by the larger academic community, are the praxis; interpreting the meaning of it all is the theoria, and here we posit a very simple foundation to open those discussions. Along this path it seems we will learn how numbers are the function and geometries are the form, how each is the other’s Janus face, and perhaps even how time is derivative of number and space derivative of geometry.

Simple Embedded Geometries, The Initial Framework For A Question

Observing how the simplest geometric objects are readily embedded within each other, a high school geometry class1 asked a similar question to that asked by Zeno (circa 430 BC) centuries earlier.2 “How many steps inside can we go before we can go no further?”

The students had learned about the Planck Length, a conceptual limit of 1.616199(97)x10-35 meters. Using base-2 exponential notation, these students rather quickly discovered that it took just over 101 steps going within to get into the range of the Planck Length.

For this exercise they followed just two geometrical objects, the simple tetrahedron and the octahedron. Within that tetrahedron is an octahedron perfectly enclosed within it. Also, within each corner are four half-sized tetrahedrons.

We went inside again. At each notation or step we simply selected an object and divided the edges in half and connected those new vertices. Perfectly enclosed within the octahedron are six half-sized octahedrons in each of the six corners and eight half-sized tetrahedrons in each of the eight faces.

Selecting either a tetrahedron or octahedron, it would seem that one could divide-by-2 or multiply-by-2 each of the edges without limit. If we take the Planck Length as a given, it is not possible at the smallest scale.

And, if we take the measurements of the Sloan Digital Sky Survey (SDSS III), Baryon Oscillation Spectroscopic Survey (BOSS)3 as a given, there are also apparent limits within the large-scale universe — it is called the Observable Universe.

OctahedronAlso, observe how the total number of tetrahedrons and octahedrons increases at each doubling. At the next doubling there are a total of 10 octahedrons and 24 tetrahedrons. On the third doubling, there are 84 octahedrons and 176 tetrahedrons, and then on the fourth, 680 octahedrons and 1376 tetrahedrons. On the fifth step within, there are 10944 tetrahedrons and 5456 octahedrons.

The numbers become astronomically large within 101 steps. It is more aggressive than the base-2 exponential notation used with the classic wheat and chessboard story4 which, of course, is only 64 steps or notations.

Calculations

The following day we chased the simple math going out to the edges of the Observable Universe. There were somewhere between 101 to 105 steps (doublings or notations) to get out in the range of that exceeding large measurement, 1.03885326×1026 meters. By combining these results, we had the entire “known” universe, from the smallest to the largest measurements in a range from 202.34+ notations (calculation by NASA’s Joe Kolecki) to 205.11+ notations5 (calculation by Jean-Pierre Luminet). At the same time, the growth of the number of objects by multiplying or dividing became such a large number, it challenged our imaginations. We had to learn to become comfortable with numbers in new ways — both exceedingly large and exceedingly small, and the huge numbers of objects.

Not long into this exploration it was realized that to achieve a consistent framework for measurements, this simple model for our universe ought to begin with the Planck Length (ℓP). It was a very straightforward project to multiply by 2 from the ℓP to the edges of the Observable Universe (OU). That model first became a rather long chart that was dubbed the Big Board – little universe6 And then, sometime later we began converting it to a much smaller table7 (Also, a working draft).

This simple construction raised questions about which we had no answers:

1. Planck Length. Why is the Planck Length the right place to start? Can it be multiplied by 2?  What happens at each step?

2. The first 65 Notations. Although we initially started with a tetrahedron with edges of one meter, in just 50 notations, dividing by 2, we were in the range of the size of a proton8. It would require another sixty-five steps within to get to the Planck Length. It begs the question, “What happens in each of those first 65 doublings from the Planck Length?” Could this possibly be the fabric of dark matter?

3. Embedded Geometries. When we start at the human scale to go smaller by dividing by 2, the number of tetrahedrons and octahedrons at each notation are multiplied by 4 and 1 within the tetrahedron and by 8 and 6 within the octahedron. That results in an astronomical volume of tetrahedrons and octahedrons as we approach the size of a proton. What does it mean and what can we do with that information?

Starting at the Planck Length, a possible tetrahedron can manifest at the second doubling and an octahedron could manifest at the third doubling. Thereafter, growth is exponential, base-4 and base-1 within the tetrahedron and base-8 and base-6 within the octahedron. To begin to understand what these numbers, the simple math, and the geometry could possibly mean, we turned to the history of scholarship particularly focusing on the Planck Length.

Discussions about the meaning of the Planck Length. Physics Today (MeadWilczek discussions).9 Though formulated between 1889 and 1900, the Planck Length received very little attention until C. Alden Mead in 1959 submitted a paper proposing that the Planck Length and Planck Time should “…play a more fundamental role in physics.” Though published in Physical Review in 1964, very little positive feedback was forthcoming. Frank Wilczek in that 2001 Physics Today article comments that “…C. Alden Mead’s discussion is the earliest that I am aware of.” He posited the Planck constants as real realities within experimental constructs whereby these constants became more than mathematical curiosities.

Frank Wilczek continued his analysis in several papers and books and he has personally encouraged the students and me to continue to focus on the Planck Length. We are.

The simple and the complex

A very simple logic suggests that things are always simple before they become complex. I assume I adopted this idea while growing up as a child; my father would ask, “Is there an even more simple solution?” Complex solutions make us feel smarter and wiser, yet the opposite is most often true. When teaching students from ages 12 to 18, one must always start with the simplest new concepts and build on them slowly. Then, a good teacher might challenge the students to see something new, “If you can, find a more simple solution.”

Our class was basic science and mathematics, focusing on geometry. My assignment was to introduce the students to the five platonic solids. Yet, by our third time together, we were engaging the Planck Length. Is it a single point? Is it a vertex making the simplest space? What else could it be? Can it be more than just a physical measurement? Are we looking at point-free geometry?10 Is this a pre-structure for group theory?11 Speculations quickly got out of hand.

We knew we would be coming back to those questions over and over again, so we went on. We had to assume that the measurement could be multiplied by 2. We attributed that doubling to the thrust of life.12 So, now we have two points, or two vertices, or a line, and a larger space of some kind. Prof. Dr. Freeman Dyson13 in a personal email suggests, “Since space has three dimensions, the number of points goes up by a factor eight, not two, when you double the scale.” We liked that idea; it would give us more breathing room. However, when we realized there would be an abundance of vertices, we decided to continue to multiply by two. We wanted to establish a simple platform using base-2 exponential notation especially because it seemed to mimic life’s cellular division, chemical bonding and bifurcation theory.

The first 60 doublings, layers, steps, or notations

Facts & Guesses. If taken-as-a-given, the Planck Length is a primary vertex and it can be multiplied by 2. The exponential progression of numbers becomes a simple fact. Guessing about the meaning of the progression is another thing. And to do so, we must hypothesize, possibly just hypostatize, the basic meanings and values. In our most far-reaching thoughts, this construct seems to open up possibilities to intuit an infrastructure or pre-structure that just might-could create a place for all that scholarship that doesn’t appear to have a grid and inherent matrix — philosophies, psychologies, thoughts and ideas throughout time. So herein we posit a simple fact and make our most speculative guesses:

  • Within the first ten doublings, using simple math — multiplying by 2 — there are over 1000 vertices. Perhaps we might think about Plato’s Eidos, the Forms. Now, Prof Dr. Freeman Dyson of the Institute for Advance Studies suggests that each time we should be multiplying by 8 (not by 2). This would result in an astronomically large number of vertices.
  • Within twenty doublings, there are over a million vertices. What about Aristotle’s Ousia or Categories?
  • Within thirty steps, there are over a billion vertices. Perhaps we could hypostatize Substances, a fundamental layer that anticipates the table of elements or periodic table.
  • Within forty layers, there are over a trillion vertices. Might we intuit Qualities?
  • Within 50 doublings, there over a quadrillion vertices. How about layers for Primary Relations, the precursors of subjects and objects?
  • At the 60th notation, still much smaller than the proton, there are over a quintillion vertices. Perhaps Systems and The Mind, and every possible manifestation of a mind, awaits its place within this ever-growing matrix or grid.
  • The simple mathematics for these notations, virtually the entire small-scale universe, appears to be the domain of elementary cellular automata going back to the 1940s work of John von Neumann, Nicholas Metropolis and Stanislaw Ulam, and the more recent work of John Conway and his Game of Life, and the most recent work of Stephen Wolfram and his research behind A New Kind of Science.

With so many vertices, one could build a diversity of constructions, then ask the question, “What does it mean?” Our exercise with the simplest math and simple concepts is the praxis. We have begun to turn to the history of scholarship to begin to deem the theoria and begin to see if any of our intuitions might somehow fit. We knew our efforts were naïve, surely a bit idiosyncratic (as a prominent physicist had personally commented to me in email14), but we were attempting to create a path that would take us from the simplest to the most complex. If we stayed with our simple math and simple geometries, we figured that we did not have to understand the dynamics of protons, fermions, scalar constraints and modes, gravitational fields, and so so much more. That could come later.

Although not studied per se, these 60 notations have been characterized throughout the years. Within the scientific age, it has been discussed as the luminiferous aether (ether).15 Published in 1887 by Michelson–Morley, their work put this theory to rest for about a century. Yet, over the years, the theories around an aether have been often revisited. The ancient Greek philosophers called it quintessence15 and that term has been adopted by today’s theorists for a form of dark energy.

Theories abound.

Oxford physicist-philosopher, Roger Penrose16 calls it, Conformal Cyclic Cosmology made popular within his book, Cycles of Time. In a September 24, 2008 interview on NBC News (Cosmic Log), Frank Wilczek of MIT simply calls this domain, the Grid,17 and the most complete review of it is within his book, The Lightness of Being. We know with just two years of work on this so-called Big Board – little universe chart and much less time on our compact table, we will be exploring those 60-to-65 initial steps most closely for years to come. This project will be in an early-stage development for a lifetime.

From Parameters to Boundaries and Boundary Conditions

This construction with its simple nested geometries and simple calculations (multiplying the Planck Length by 2 as few as 202.34 times to as many as 205.11 times) puts the entire universe in an mathematically ordered set and a geometrically homogeneous group. Although functionally interesting, quite simple and rather novel, is it useful?

Some of the students thought it was. This author thought it was. And, a few scholars with whom we have spoken encouraged us. So the issue now is to continue to build on it until it has some real practical philosophical, mathematical, and scientific applicability. Taking our three simple parameters just as they have been given, (1) the Planck Length, (2) multiplication by 2 and (3) Plato’s simplest geometry, what more can we say about this simple construct? Let me go out on a limb here:

1. Parameters. These parameters have functions; each creates a simple order and that order creates continuity. The form is order and the function is “to create continuity or its antithesis, discontinuity.” As a side note, one could observe, that this simple parameter set is also the beginning of memory and intelligence.

2. Relations. The parameters all work together to form a simple relation. From four points, a potential tetrahedron, simple symmetries are introduced. With eight points, the third doubling, a potential simple octahedron could become manifest. All the parameters work together to provide a foundation for additional simple functions to manifest. The form is the relation and the function is “to make and break symmetries.”

3. Dynamics. Our simple parameters, now manifesting real relations that have the potential to be extended in time, create a foundation for dynamics, all dynamics. That is the form with the potential to become a category, and the function is to create various harmonies or to create disproportion, imbalance, or disagreement. Dynamics open us to explore such concepts as periodicity, waves, cycles, frequency, fluctuations, and more. And, this third parameter set, dynamics-harmony, necessarily introduces our perception of time. With this additional parameter set we begin to intuit what might give rise to the fullness of any moment in time and of time itself. Also, perspectivally, these parameter sets, on one side, just might could summarize perfection or a perfected moment in time, and on the other side, imperfection or quantum physics. Please note that our use of the double modal, might could, is a projection for future, intense analysis and interpretation. It is a common expression in the New Orleans area.

Perfections and Imperfections. The first imperfection can occur very early within the notations (doublings-steps-layers). With the first doubling there are two vertices (the smallest line or smallest-possible string). At the next doubling, there are four vertices; a perfect tetrahedron could be rendered. It is the simplest three-dimensional form defined by the fewest number of vertices and equal angles. There are other logical possibilities: (1) four vertices form a longer line or string, (2) four vertices form a jagged line or string of which various skewed triangles and polygons could be formed, (3) three vertices form a triangle that defines a plane with the fourth vertex forming an imperfect tetrahedron that opens the first three dimensions of space. Five vertices can be used to create two tetrahedrons with a common face. Six vertices could be used to create an octahedron or three abutting tetrahedrons (two faces are shared).

The third doubling renders eight vertices. With just seven of those vertices, a pentagonal cluster of five tetrahedrons can be inscribed. The earliest analysis of these five regular tetrahedra sharing one edge appears to be the work of F. C. Frank and J.S. Kaspers in their 1959 analysis of complex alloy structures. There is a gap of about 7.36° (7° 21′) or less than 1.5° between each face.19 Also known as a pentastarThere are many other configurations of a five-tetrahedral construction that can be created with those seven vertices. These will be addressed in a separate article. For our discussions here, it seems that each suggests a necessarily imperfect construction. The parts only fit together by stretching them out of their simple perfection. One might speculate that the spaces created within these imperfections could also provide room for movement or fluctuation.

With all eight vertices, a rather simple-but-complex figure can be readily constructed with six tetrahedrons, three on either side of a rather-stretched pyramid filling an empty space between each group. This figure has many different manifestations using just eight vertices. Between seven and eight vertices is a key step in this simple evolution. Both figures can morph and change in many different ways, breaking-and-making perfect constructions.

A few final flights of imagination

In one’s most speculative, intuitive moments, one “might-could” see these constructions as a way of engaging the current work with the Lie Group,20 yet here may begin a different approach to continuous transformations groups. Just by replicating these eight vertices, a tetrahedral-octahedral-tetrahedral (TOT) chain emerges. Here two octahedrons and two tetrahedrons are perfectly aligned by the eight and a simple structure reaching from the smallest to the largest readily emerges and tiles the universe. Then, there is yet another very special hexagonal tiling application to be studied within the octahedron by observing how each of the four hexagonal plates interact with all congruent tetrahedrons.

Within all these notations, steps or doublings, simplicity begets complexity. Structures become diverse. And, grids of potential and a matrix of possibilities are unlocked.

Endnotes, Footnotes and References: (Work-in-progress)

1 Monday, December 19, 2011 Bruce Camber substituted for the geometry teacher within the John Curtis High School, just up river from New Orleans. The concept of a Big Board – little universe developed within the context of these classes. That work continues today.

2 We should all be as curious as Zeno. His paradoxes are widely studied even today. Zeno of Elea (ca. 490 BC – ca. 430 BC) is a pre-Socratic Greek philosopher, a member of the Eleatic School founded by Parmenides. Known for his paradoxes to understand the finite and infinite, we will be revisiting Zeno often.

3 For most students, the wheat & chessboard example is their introduction to exponential notation. Wikipedia provides an overview.

4Most Precise Measurement of Scale of the Universe,” Jennifer Ouellette, Discover Magazine, April 6, 2012

5 On Wednesday, July 17, 2013, Prof. Dr. Jean-Pierre Luminet wrote: “I tried to understand the discrepancy between my calculation and that of Joe Kolecki. The reason is simple. Joe took as a maximum length in the universe the so-called Hubble radius, whereas in cosmology the pertinent distance is the diameter of the observable universe (delimited by the particle horizon), now estimated to be 93 billion light years, namely 8.8 10^26 m. In my first calculation giving the result 206, I took the approximate 10^27 m, and for the Planck length 10^(-35) m instead of the exact 1.62 10^(-35) m. Thus the right calculation gives 8.8 10^26 m / 1.62 10^(-35) m = 5.5 10^(61) = 2^(205.1). Thus the number of steps is 205 instead of 206. You can quote my calculation in your website.” – Jean-Pierre Luminet, Directeur de recherches au CNRS, Laboratoire Univers et Théories (LUTH), Observatoire de Paris, 92195 Meudon Cedex http://luth.obspm.fr/~luminet/

6 Big Board – little universe, a five foot by one foot chart that begins with the Planck Length and uses exponential notation to go to the width of a human hair in 102 steps and to the edges of the observable universe in 202.34-to-205.11 notations, or steps, or doublings.

7 Universe Table, ten columns by eleven rows, this table is made to be displayed on Smartphones and every other form of a computer. At the time of this writing, Version 1.0.0.2. was posted..

8 Taking just the octahedron, the calculation is: 665=3.8004172ex1050 octahedrons and 865= 5.0216814e58 tetrahedrons. Add to that, with the tetrahedrons at each step are four tetrahedrons: 465=1.3611295ex1039 and the additional octahedron within it at each step : 165=65

9 Frank Wilczek, the head of the Center for Theoretical Physics at MIT and a 2004 Nobel Laureate has a series of articles about the Planck Length within Physics Today. Called Scaling Mt. Planck, these are all well-worth the read. His book, The Lightness of Being, to date, is his most comprehensive summary.

10 Point-free geometry, a concept introduced by A. N. Whitehead in 1919/1920, was further refined in 1929 within his publication of the book, Process & Reality. More recent studies within mereotopology continue to extend Whitehead’s initial work. Also, the study of concepts in pregeometry in physics and model theory are helpful.

11 One might speculate that group theory, with its related subjects such as combinatorics, fields, representation theory, system theory and Lie transformation groups, all apply in some way to the transformation from one notation to the next. Yet, two transformations seem to beg for special attention. One is from the Human Scale to the Small Scale and the other from the Human Scale to the Large Scale. With our range of notations from 201+ to 205 notations, our focus might turn to steps 67 to 69 at the small scale and 134 to 138 at the large scale universe. One’s speculations might could run ahead of one’s imaginative sensibilities. For example, at the transformation to the small scale, approximately in the range of the diameter of a proton, one could hypostatize that this is where the number of embedded geometries begins to contract to begin to approach the most-simple structure of the Planck Length. It would follow that within the small-scale all structures would necessarily be shared. Perhaps the proton is some kind of a boundary for individuation. That is, the closer one gets to the singularity of the Planck Length, the more those basic geometric structures within the notation are shared. Because this structure currently appears to be beyond the scope of measuring devices, we could refer to these notations as a hypostatic science, whereby hypotheses, though apparently impossible to test, are still not beyond the scope of imagination and logic. Also, as the large scale is approached, somewhere between notations 134 to 138, there might be a concrescence that opens the way to even more speculative thinking. Though not very large — between 248 miles (notation 134) and- 3500 miles (notation 138) — it might appear to be silly, truly nonsensical, to begin the search for the Einstein-Rosen bridges or wormholes! That’s certainly science fiction. Yet, if we let an idea simmer for awhile, maybe workable insights might-could begin to emerge.

12 Although the term, Thrust of Life, is used within religious and philosophical studies, it is also the subject of continuous scientific study by groups such as the Center for Science for of Information (Purdue University) through funding from the National Science Foundation.

13 Personal email to me regarding multiplying the Planck Length by 2, he said: “Since space has three dimensions, the number of points goes up by a factor eight, not two, when you double the scale.” Certainly a cogent comment, however, given we have seemingly more than enough vertices, we decided on the first pass to continue to multiply by 2 to create an initial framework from which attempt to grasp what was important and functional.

14 In a personal email to me regarding the initial posting for Wikipedia, a prominent physicist said: “…it’s certainly an idiosyncratic view, not material for an encyclopedia.”

15 The luminiferous aether was posited by many of the leading scientists of the 18th century, Sir Issac Newton (Optiks) being the most luminous. The Michael-Morley experiments of 1887 put the theory on hold such that the theory of relativity and quantum theory emerged. Yet, research to understand this abiding concept has not stopped. And, it appears that the editorial groups within Wikipedia are committed to updating that research.

16 Quintessence, the Fifth Element in Plato’s Timaeus, has been used interchangeably with the aether aether. It has a long philosophical history. That the word has been adopted in today’s discussion as one of the forms of dark energy tells us how important these physicists believe dark energy is.

17 Roger Penrose inspired the 1998 book, The Geometric Universe: Science, Geometry, and the Work of Roger Penrose. Surely Penrose is one of the world’s leading thinkers in mathematics and physics. He has been in the forefront of current research and theory since 1967, however, his work on Conformal Cyclic Cosmology is not based on simple mathematics or simple geometries. It is based on the historic and ongoing tensions within his disciplines. Though his book, Cycles of Time, written for the general population, it is brings all that history and tension with it.

18 Frank Wilczek has written extensively about the Planck length. He recognizes its signature importance within physics. When we approached him with our naive questions via email in December 2012, we did not expect an answer, but, we received one. It was tight, to the point, and challenged us to be more clear. Given he was such a world-renown expert on such matters, we were overjoyed to respond. The entire dialogue will go online at some time. He is a gracious, thoughtful thinker who does not suffer fools gladly. And because we believe, like he does, in beauty and simplicity, perhaps there will be a future dialogue that will further embolden us.

19 Frank, F. C.; Kasper, J. S. (1958), “Complex alloy structures regarded as sphere packings. I. Definitions and basic principles”, Acta Crystall. 11. and Frank, F. C.; Kasper, J. S. (1959), and “Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures”, Acta Crystall. 12. More recently, this construct has been analyzed by the following: (1) “A model metal potential exhibiting polytetrahedral clusters” by Jonathan P. K. Doye, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom, J. Chem. Phys. 119, 1136 (2003) The compete article is also available at ArXiv.org as a PDF: http://arxiv.org/pdf/cond-mat/0301374‎ (2) “Polyclusters” by the India Institute of Science in Bangalore has many helpful illustrations and explanations of crystal structure. PDF: http://met.iisc.ernet.in/~lord/webfiles/clusters/polyclusters.pdf (3) “Mysteries in Packing Regular Tetrahedra” Jeffrey C. Lagarias and Chuanming Zong, a focused look at the history.

20 The work of Sophus Lie (1842 – 1899), a Norwegian mathematician, not only opened the way to the theory of continuous transformation groups for all of mathematics, it has given us a pivot point within group theory by which to move our analysis from parameters to boundary conditions and on to transformations between each notation. We are hoping that we are diligent enough to become Sophus Lie scholars.

___________________________________________________________________

About the author

In 1970 Bruce Camber began his initial studies of the 1935 Einstein-Podolsky-Rosen (EPR) thought experiment. In 1972 he was recruited by the Boston University School of Theology based on (1) his research of perfected states in space-time through work within a think tank in Cambridge, Massachusetts, (2) his work within the Boston University Department of Physics, Boston Colloquium for the Philosophy of Science, and (3) his work with Arthur Loeb (Harvard) and the Philomorphs. With introductions by Victor Weisskopf (MIT) and Lew Kowarski (BU), he went to CERN on two occasions, primarily to discuss the EPR paradox with John Bell. In 1979, he coordinated a project at MIT with the World Council of Churches to explore shared first principles between the major academic disciplines represented by 77 peer-selected, leading-living scholars. In 1980 he spent a semester with Olivier Costa de Beauregard and Jean-Pierre Vigier at the Institut Henri Poincaré focusing on the EPR tests of Alain Aspect at the Orsay-based Institut d’Optique. In 1994, following the death of another mentor, David Bohm, Camber re-engaged simple interior geometries based on several discussions with Bohm and his book, Fragmentation & Wholeness. In 1997 he had made  molds made to produce thousands of the tetrahedron and octahedron. These are used in the models throughout these discussions. In 2002, he spent a day with John Conway at Princeton to discuss the simplicity of the interior parts of the tetrahedron and octahedron. In 2011, he challenged a high school geometry class to use base-2 exponential notation to follow the interior structure of basic geometries from the Planck Length and to the edges of the Observable Universe.

****
Afterthought: Could cellular automaton apply to the first 65 doublings from the Planck Length using base-2 exponential notation to PRE-STRUCTURE things?

More than things, as in protons and fermions, could the results of cellular automaton be understood as Plato’s Forms or Eidos (perhaps notations 2-to-10) and Aristotle’s Ousia (perhaps doublings 10-to-20)? Assuming the Planck Length to be a vertex, and assigning the area over to pure geometries, do we have the basis for form, structure, and the architecture for substances? Then, could it be that this architecture gives rise to an architecture for qualities (notations 20-to-30)? And, as we progress in the evolution of complexity, could it be that in this emergence, there is now an architecture for relations (notations 40-to-50)? If we assume an architecture for relations, could the next be an architecture for Systems (notations 50-to-60) and this actually becomes the domain of the Mind? It is certainly a different kind of ontology given it all begins with cellular automaton and base-2 notation provide a coherent architecture (with built in imperfections of the five-tetrahedral cluster also known as a pentastar).

Just what are we to believe about anything?

Last update: Sunday, September 7, 2014

Please note: This page was first posted within the Small Business School website (television series about best business practices).  Bruce Camber and his wife, Hattie Bryant, were the creator/founders.  A few links just may still go back to Small Business School. You can use your back button to come back to this article.

__________

Constants1 and universals2 are inherent throughout all of life.  Most often based on a combination of logic, mathematics, and consistent measurements, these concepts appear to be true throughout all time and within any space (certainly within defined parameters and boundary conditions). Some people believe these concepts can actually open pathways to understand how it is that there is space and time, and human life and consciousness. It is all so bewildering and the sciences and mathematics around these issues so complex and seemingly impenetrable, people everywhere yearn for compelling but somewhat easier answers to these big questions about the meaning and value of life.

Many religions3 are not very religious and are best understood as a cult.4  Some philosophies also qualify.  Simply stated, cults are the people and their organized set of beliefs that are primarily based on their founding documents, historic writings lifted up as the highest principles and concepts around which one can orient their life.  Though it might seem that many types of organizations could be labelled a cult, it is far from the truth. Although basic beliefs within any organization come from their writings, balanced organizations  give as much, if not more weight and importance to their best scholars’ research, writings and teachings about their historical statements and how these work with the constants understood throughout the sciences and universals understood by the most-respected scholars throughout time.  Most cults offer more simplified answers to such questions.  And for their followers, these answers become their Absolute5  framework,  the fundamentals of their belief system.

That definition of a cult is also the beginning of a working definition of fundamentalism.6  It does not matter what the belief system is;  fundamentalists are mostly caught up with the fundamentals that have been defined within a particular space at a particular time. As already observed, these are historic moments. The scientific community is not exempt. It has its own group of fundamentalists among their secularists. These folks stridently proclaim that Atheism is the only true “religion” or system of belief about ultimate things. The radical atheists take what has been given by the sciences, and boldly proclaim,  “We have the only right answers. This is the Way, the Truth, and the Light.”

Mainstream religions and philosophies context their belief system within our known understanding of universals & constants.  Although the focused study of the universals-and-constants is mostly the domain of natural sciences,  other disciplines — logic, mathematics and ethics — also open this world. Our best scientists know that their natural sciences are still young and there are many new worlds and universes yet to explore.

Big Board little universe

Both types of fundamentalists — religious and scientific — fall short.

There are profoundly simple constants-universals that have not been fully explored and are not generally recognized by the world’s scientific community that could begin to change things. A very simple example was the focus of five high school geometry classes that asked, “How many steps would it take to get to the Planck length using base-2 exponential notation assuming nested geometries all the way?” We found about 101 steps going within to the Planck length going all just by dividing each edge within each step by 2 (and connecting those new vertices) and about 101 steps to the Observable Universe going out by multiplying by 2.

We put it all on a board with a full-spectrum color wheel as the background and called it the Big Board-little universe (BB-lu).

It appears to be the first time people would see the entire universe from the smallest to the largest, all mathematically notated and necessarily related, on one long board in somewhere over 201 steps or doublings. Perhaps this simple scale based on the Planck length could open new worlds to explore at CERN’s Large Hadron Collider. To the best of our current knowledge, steps 1 to 60 have never been discussed as such.

So, this discussion is not a science versus faith discussion.   It is a focus on the ways we approach and interpret both science and religion. It is about  exegesis and hermeneutics.   Most often those two studies are only about the way we interpret religious texts, particularly sacred scripture; however, both can also be applied to the sciences, especially regarding the limitations of science and the edge of discovery.

How and why do teachers become fundamentalists?  Where do they go wrong?

Let us start with a focus on Radical Islam and scientific Atheism.   We gave this question some attention within our work with our Small Business School television series that aired  on PBS-TV  and the Voice of America-TV. We were asking about the root causes of 9/11. Here is a link to those studies as well as a letter to the Iran’s Grand Ayatollah Ali Khamanei back in 2006. Lumping them with the growing stridency of the today’s breed of Atheists — they, too, are demanding recognition and real power —   all types of fundamentalism really need to be studied, compared and contrasted for their use or lack of use of universals and constants.   Notwithstanding, because Radical Islam and her teachers demand that we acknowledge them (or they will rather arbitrarily blow us up, and they continue to threaten to kill us), we should begin with these two. Surely both are having the penultimate temper tantrum (intolerance to disagreement) so, from here let us compile studies of the most influential among their current groups of teachers.

A primary challenge for each of us is to define what is universal and constant within our own life. It is no easy task. The summary in the concluding paragraph of this article is a work-in-progress and the initial work is linked here.7 In 1979 that work included many leading , living scholars.  It had begun to evolve from a study of physics and the sciences, to include religion, logic, ethics, value, and even business.8

A key question to ask is, “What concepts are shared by all of these disciplines?”  Assuming you get a few answers, ask yourself, “What concepts are the most simple?” And also, “What concepts could have a face of perfection?” Those three questions opened the way to this paper’s simple working formula:

The form – the function (a face of perfection) and the imperfect quantum world

Embedded within this little formulation and the statements just above it are links to the first applications of these universals. It goes back to work in 1979 at MIT regarding first principles with 77 leading, living scholars from around the worldIt has stimulated many simple explorations that seem to have been overlooked by the academics, most certainly the religionists and the fundamentalists.

A simple summary might go something like this:

Continuity defines order. Symmetries and asymmetries in some manner define all relations. The perfection of a relation is a symmetry. And, a harmony defines a perfection of multiple symmetries within a dynamic moment.

One can use religious language, metaphorical language, or scientific language to describe each. And if done well, that language is an observation of one of the faces of the same thing and each language helps to inform the other. When teachers give too much weight to one language over the other, they begin to lose their balance and fall into the trap of thinking that they just may be smarter than all the others.

—————

Over time such conclusions hurt their ability to think-and-reason. Thank you.
1 An evolving analysis of physical constants  within Wikipedia (opens in a new window).
2 An evolving analysis of universals, the problem of universals as well as universal properties in Wikipedia (new window opens).
3 An evolving analysis of nature of religion can be found within Wikipedia (opens in a new window).
4 An evolving analysis of nature of cults,   also within Wikipedia (opens in a new window).
5 An evolving analysis of the concepts around The Ultimate, here known as The Absolute,  within Wikipedia (new window).
6 An evolving analysis of the word, fundamentalism,  within Wikipedia (new window).
7 Continuity equations define most constants and beg the question, “What is continuity?” and Wikipedia has something to say.
8 Wikipedia’s references to symmetries are helpful. However, our challenge is to find the best living scholars to engage. Here Roger Penrose and Lisa Randall offer insights.

Could The Planck Length Be The Next Big Thing? Could Planck Time Be A Gateway To The Universe?

Is it true that everything starts most simply?
If it is, then let us be studying the Planck Units.

Please note: First draft posted online in September 2012.  Simple updates in March 2015. Timeline for the author (also posted within his business, Small Business School).

Abstract: Analysis of three very simple concepts taken from a high school geometry class are: (1) the smallest-and-largest measurement of a length, (2) dividing and multiplying by 2, and (3) nested-embedded-and-meshed (combinatorial) geometries. Though initially a simple thought exercise (hardly an experiment), our students quickly developed a larger vision to create a working framework to categorize and relate everything in the known universe. Though appearing quite naïve and overly ambitious in its scope, the work initially began at the Planck Length and proceeded to the Observable Universe in somewhere over 202.34+ base-2 exponential notations. That range of notations is examined and the unique place of the first sixty notations is reviewed. This simple mathematical progression and the related geometries, apparently heretofore not examined by the larger academic community, are the praxis; interpreting the meaning of it all is the theoria, and here we posit a very simple foundation to open those discussions. Along this path it seems we will learn how numbers are the function and geometries are the form, how each is the other’s Janus face, and perhaps even how time is derivative of number and space derivative of geometry.

The Initial Framework For A Question

Observing how some of the simplest geometric objects are readily embedded within each other, a high school geometry class1 asked a similar question to that asked centuries earlier by Zeno (circa 430 BC).2 “How many steps inside can we go before we can go no further?”

The students had learned about the Planck Length, a conceptual limit of 1.616199(97)x10-35 meters. Using base-2 exponential notation, these students rather quickly discovered that it took just over 110 steps going within to get into the range of the Planck Length.

For this exercise they followed just two geometrical objects, the simple tetrahedron and the octahedron. Within that tetrahedron is an octahedron perfectly enclosed within it. Also, within each corner are four half-sized tetrahedrons.

We went inside again. At each notation or step we simply selected an object and divided the edges in half and connected those new vertices. Perfectly enclosed within the octahedron are six half-sized octahedrons in each of the six corners and eight half-sized tetrahedrons in each of the eight faces.

Selecting either a tetrahedron or octahedron, it would seem that one could divide-by-2 or multiply-by-2 each of the edges without limit. If we take the Planck Length as a given, it is not possible at the smallest scale.

And, if we take the measurements of the Sloan Digital Sky Survey (SDSS III), Baryon Oscillation Spectroscopic Survey (BOSS)3 as a given, there are also apparent limits within the large-scale universe — it is called the Observable Universe.

OctahedronAlso, observe how the total number of tetrahedrons and octahedrons increases at each doubling. At the next doubling there are a total of 10 octahedrons and 24 tetrahedrons. On the third doubling, there are 84 octahedrons and 176 tetrahedrons, and then on the fourth, 680 octahedrons and 1376 tetrahedrons. On the fifth step within, there are 10944 tetrahedrons and 5456 octahedrons.

The numbers become astronomically large within 101 steps. It is more aggressive than the base-2 exponential notation used with the classic wheat and chessboard story4 which, of course, is only 64 steps or notations.

Calculations

The following day we chased the simple math going out to the edges of the Observable Universe. There were somewhere between 101 to 105 steps (doublings or notations) to get out in the range of that exceeding large measurement, 1.03885326×1026 meters. By combining these results, we had the entire “known” universe, from the smallest to the largest measurements in a range.  Initially the range began with 202.34+ notations (calculation by NASA’s Joe Kolecki), then 205.11+ notations5 (calculation by Jean-Pierre Luminet). At the same time, the growth of the number of objects by multiplying or dividing became such a large number, it challenged our imaginations. We had to learn to become comfortable with numbers in new ways — both exceedingly large and exceedingly small, and the huge numbers of objects.

Not long into this exploration it was realized that to achieve a consistent framework for measurements, this simple model for our universe ought to begin with the Planck Length (ℓP). It was a very straightforward project to multiply by 2 from the ℓP to the edges of the Observable Universe (OU). That model first became a rather long chart that was dubbed the Big Board – little universe.6 And then, sometime later we began converting it to a much smaller table7 (also, a working draft).

This simple construction raised questions about which we had no answers:

  1. Planck Length. Why is the Planck Length the right place to start? Can it be multiplied by 2? What happens at each step?
  2. The first 65 Notations. Although we initially started with a tetrahedron with edges of one meter, in just 50 notations, dividing by 2, we were in the range of the size of a proton8. It would require about sixty-five additional steps within to get to the Planck Length. It begs the question, “What happens in each of those first 65 doublings from the Planck Length?”
  3. Embedded Geometries. When we start at the human scale to go smaller by dividing by 2, the number of tetrahedrons and octahedrons at each notation are multiplied by 4 and 1 within the tetrahedron and by 8 and 6 within the octahedron. That results in an astronomical volume of tetrahedrons and octahedrons as we approach the size of a proton. What does it mean and what can we do with that information?

Starting at the Planck Length, a possible tetrahedron can manifest at the second doubling and an octahedron could manifest at the third doubling. Thereafter, growth is exponential, base-4 and base-1 within the tetrahedron and base-8 and base-6 within the octahedron. To begin to understand what these numbers, the simple math, and the geometry could possibly mean, we turned to the history of scholarship particularly focusing on the Planck Length.

Discussions about the meaning of the Planck Length. Physics Today (MeadWilczek discussions).9 Though formulated between 1889 and 1900, the Planck Length received very little attention until C. Alden Mead in 1959 submitted a paper proposing that the Planck Length and Planck Time should “…play a more fundamental role in physics.” Though published in Physical Review in 1964, very little positive feedback was forthcoming. Frank Wilczek in that 2001 Physics Today article comments that “…C. Alden Mead’s discussion is the earliest that I am aware of.” He posited the Planck constants as real realities within experimental constructs whereby these constants became more than mathematical curiosities.

Frank Wilczek continued his analysis in several papers and books and he has personally encouraged the students and me to continue to focus on the Planck Length. We are.

The simple and the complex

A very simple logic suggests that things are always simple before they become complex. I assume I adopted this idea while growing up as a child; my father would ask, “Is there an even more simple solution?” Complex solutions make us feel smarter and wiser, yet the opposite is most often true. When teaching students from ages 12 to 18, one must always start with the simplest new concepts and build on them slowly. Then, a good teacher might challenge the students to see something new, “If you can, find a more simple solution.”

Our class was basic science and mathematics, focusing on geometry. My assignment was to introduce the students to the five platonic solids. Yet, by our third time together, we were engaging the Planck Length. Is it a single point? Is it a vertex making the simplest space? What else could it be? Can it be more than just a physical measurement? Are we looking at point-free geometry? Is this a pre-structure for group theory? Speculations quickly got out of hand.

We knew we would be coming back to those questions over and over again, so we went on. We had to assume that the measurement could be multiplied by 2. We attributed that doubling to the thrust of life.12 So, now we have two points, or two vertices, or a line, and a larger space of some kind. Prof. Dr. Freeman Dyson13 in a personal email suggests, “Since space has three dimensions, the number of points goes up by a factor eight, not two, when you double the scale.” We liked that idea; it would give us more breathing room. However, when we realized there would be an abundance of vertices, we decided to continue to multiply by two. We wanted to establish a simple platform using base-2 exponential notation especially because it seemed to mimic life’s cellular division and chemical bonding.

The first 60 doublings, layers, steps, or notations

Facts & Guesses. If taken-as-a-given, the Planck Length is a primary vertex and it can be multiplied by 2. The exponential progression of numbers becomes a simple fact. Guessing about the meaning of the progression is another thing. And to do so, we must hypothesize, possibly just hypostatize, the basic meanings and values. In our most far-reaching thoughts, this construct seems to open up possibilities to intuit an infrastructure or pre-structure that just might-could create a place for all that scholarship that doesn’t appear to have a grid and inherent matrix — philosophies, psychologies, thoughts and ideas throughout time. So herein we posit a simple fact and make our most speculative guesses:

  • Within the first ten doublings, using simple math — multiplying by 2 — there are over 1000 vertices. Perhaps we might think about Plato’s Eidos, the Forms. Now, Prof Dr. Freeman Dyson of the Institute for Advanced Studies suggests that each time we should be multiplying by 8 (not by 2) because of scaling laws and dimensional analysis.
  • Within twenty doublings, there are over a million vertices. What about Aristotle’s Ousia or Categories? If scaling laws are applied, there would be over two quintillion vertices by the 20th notation.
  • Within thirty steps, there are over a billion vertices. Perhaps we could hypostatize Substances, a fundamental layer that anticipates the table of elements or periodic table.
  • Within forty layers, there are over a trillion vertices. Might we intuit Qualities?
  • Within 50 doublings, there over a quadrillion vertices. How about layers for Primary Relations, the precursors of subjects and objects?
  • At the 60th notation, still much smaller than the proton, there are over a quintillion vertices. Perhaps Systems and The Mind, and every possible manifestation of a mind, awaits its place within this ever-growing matrix or grid.
  • The simple mathematics for these notations, virtually the entire small-scale universe, appears to be the domain of elementary cellular automata going back to the 1940s work of John von Neumann, Nicholas Metropolis and Stanislaw Ulam, and the more recent work of John Conway and his Game of Life, and the most recent work of Stephen Wolfram and his research behind A New Kind of Science.

With so many vertices, one could build a diversity of constructions, then ask the question, “What does it mean?” Our exercise with the simplest math and simple concepts is the praxis. We have begun to turn to the history of scholarship to begin to deem the theoria and begin to see if any of our intuitions might somehow fit. We knew our efforts were naïve, surely a bit idiosyncratic (as a prominent physicist had personally commented to me in email14), but we were attempting to create a path that would take us from the simplest to the most complex. If we stayed with our simple math and simple geometries, we figured that we did not have to understand the dynamics of protons, fermions, scalar constraints and modes, gravitational fields, and so so much more. That could come later.

Although not studied per se, these 60 notations have been characterized throughout the years. Within the scientific age, it has been discussed as the luminiferous aether (ether).15 Published in 1887 by Michelson–Morley, their work put this theory to rest for about a century. Yet, over the years, the theories around an aether have been often revisited. The ancient Greek philosophers called it quintessence15 and that term has been adopted by today’s theorists for a form of dark energy.

Theories abound.

Oxford physicist-philosopher, Roger Penrose16 calls it, Conformal Cyclic Cosmology made popular within his book, Cycles of Time. In a September 24, 2008 interview on NBC News (Cosmic Log), Frank Wilczek of MIT simply calls this domain, the Grid,17 and the most complete review of it is within his book, The Lightness of Being. We know with just two years of work on this so-called Big Board – little universe chart and much less time on our compact table, we will be exploring those 60-to-65 initial steps most closely for years to come. This project will be in an early-stage development for a lifetime.

From Parameters to Boundaries and Boundary Conditions

This construction with its simple nested geometries and simple calculations (multiplying the Planck Length by 2 as few as 202.34 times to as many as 205.11 times) puts the entire universe in an mathematically ordered set and a geometrically homogeneous group. Although functionally interesting, quite simple and rather novel, is it useful?

Some of the students thought it was. This author thought it was. And, a few scholars with whom we have spoken encouraged us. So the issue now is to continue to build on it until it has some real practical philosophical, mathematical, and scientific applicability. Taking our three simple parameters just as they have been given, (1) the Planck Length, (2) multiplication by 2 and (3) Plato’s simplest geometry, what more can we say about this simple construct? Let me go out on a limb here:

1. Parameters. These parameters have functions; each creates a simple order and that order creates continuity. The form is order and the function is “to create continuity or its antithesis, discontinuity.” As a side note, one could observe, that this simple parameter set is also the beginning of memory and intelligence.

2. Relations. The parameters all work together to form a simple relation. From four points, a potential tetrahedron, simple symmetries are introduced. With eight points, the third doubling, a potential simple octahedron could become manifest. All the parameters work together to provide a foundation for additional simple functions to manifest. The form is the relation and the function is “to make and break symmetries.”

3. Dynamics. Our simple parameters, now manifesting real relations that have the potential to be extended in time, create a foundation for dynamics, all dynamics. That is the form with the potential to become a category, and the function is to create various harmonies or to create disproportion, imbalance, or disagreement. Dynamics open us to explore such concepts as periodicity, waves, cycles, frequency, fluctuations, and more. And, this third parameter set, dynamics-harmony, necessarily introduces our perception of time. With this additional parameter set we begin to intuit what might give rise to the fullness of any moment in time and of time itself. Also, perspectivally, these parameter sets, on one side, just might could summarize perfection or a perfected moment in time, and on the other side, imperfection or quantum physics. Please note that our use of the double modal, might could, is a projection for future, intense analysis and interpretation. It is a common expression in the New Orleans area.

Perfections and Imperfections. The first imperfection can occur very early within the notations (doublings-steps-layers). With the first doubling there are two vertices (the smallest line or smallest-possible string). At the next doubling, there are four vertices; a perfect tetrahedron could be rendered. It is the simplest three-dimensional form defined by the fewest number of vertices and equal angles. There are other logical possibilities: (1) four vertices form a longer line or string, (2) four vertices form a jagged line or string of which various skewed triangles and polygons could be formed, (3) three vertices form a triangle that defines a plane with the fourth vertex forming an imperfect tetrahedron that opens the first three dimensions of space. Five vertices can be used to create two tetrahedrons with a common face. Six vertices could be used to create an octahedron or three abutting tetrahedrons (two faces are shared).

The third doubling renders eight vertices. With just seven of those vertices, a pentagonal cluster of five tetrahedrons can be inscribed. The earliest analysis of these five regular tetrahedra sharing one edge appears to be the work of F. C. Frank and J.S. Kaspers in their 1959 analysis of complex alloy structures. There is a gap of about 7.36° (7° 21′) or less than 1.5° between each face.19 Also known as a pentastarThere are many other configurations of a five-tetrahedral construction that can be created with those seven vertices. These will be addressed in a separate article. For our discussions here, it seems that each suggests a necessarily imperfect construction. The parts only fit together by stretching them out of their simple perfection. One might speculate that the spaces created within these imperfections could also provide room for movement or fluctuation.

With all eight vertices, a rather simple-but-complex figure can be readily constructed with six tetrahedrons, three on either side of a rather-stretched pyramid filling an empty space between each group. This figure has many different manifestations using just eight vertices. Between seven and eight vertices is a key step in this simple evolution. Both figures can morph and change in many different ways, breaking-and-making perfect constructions.

A few final flights of imagination

In one’s most speculative, intuitive moments, one “might-could” see these constructions as a way of engaging the current work with the Lie Group,20 yet here may begin a different approach to continuous transformations groups. Just by replicating these eight vertices, a tetrahedral-octahedral-tetrahedral (TOT) chain emerges. Here two octahedrons and two tetrahedrons are perfectly aligned by the eight and a simple structure reaching from the smallest to the largest readily emerges and tiles the universe. Then, there is yet another very special hexagonal tiling application to be studied within the octahedron by observing how each of the four hexagonal plates interact with all congruent tetrahedrons.

Within all these notations, steps or doublings, simplicity begets complexity. Structures become diverse. And, grids of potential and a matrix of possibilities are unlocked.

Endnotes, Footnotes and References: (Work-in-progress)

1 Monday, December 19, 2011 Bruce Camber substituted for a high school geometry teacher within the Curtis School, just up river from New Orleans. The concept of a Big Board – little universe developed within the context of these classes. That work continues today.

2 We should all be as curious as Zeno. His paradoxes are widely studied even today. Zeno of Elea (ca. 490 BC – ca. 430 BC) is a pre-Socratic Greek philosopher, a member of the Eleatic School founded by Parmenides. Known for his paradoxes to understand the finite and infinite, we will be revisiting Zeno often.

3Most Precise Measurement of Scale of the Universe,” Jennifer Ouellette, Discover Magazine, April 6, 2012

4 For most students, the wheat & chessboard example is their introduction to exponential notation. Wikipedia provides an overview.

5 On Wednesday, July 17, 2013, Prof. Dr. Jean-Pierre Luminet wrote: “I tried to understand the discrepancy between my calculation and that of Joe Kolecki. The reason is simple. Joe took as a maximum length in the universe the so-called Hubble radius, whereas in cosmology the pertinent distance is the diameter of the observable universe (delimited by the particle horizon), now estimated to be 93 billion light years, namely 8.8 10^26 m. In my first calculation giving the result 206, I took the approximate 10^27 m, and for the Planck length 10^(-35) m instead of the exact 1.62 10^(-35) m. Thus the right calculation gives 8.8 10^26 m / 1.62 10^(-35) m = 5.5 10^(61) = 2^(205.1). Thus the number of steps is 205 instead of 206. You can quote my calculation in your website.” – Jean-Pierre Luminet, Directeur de recherches au CNRS, Laboratoire Univers et Théories (LUTH), Observatoire de Paris, 92195 Meudon Cedex http://luth.obspm.fr/~luminet/

6 Big Board – little universe, a five foot by one foot chart that begins with the Planck Length and uses exponential notation to go to the width of a human hair in 102 steps and to the edges of the observable universe in 202.34-to-205.11 notations, or steps, or doublings.

7 Universe Table, ten columns by eleven rows, this table is made to be displayed on Smartphones and every other form of a computer. At the time of this writing, Version 1.0.0.2. was posted.

8 Taking just the octahedron, the calculation is: 665=3.8004172ex1050 octahedrons and 865= 5.0216814e58 tetrahedrons. Add to that, with the tetrahedrons at each step are four tetrahedrons: 465=1.3611295ex1039 and the additional octahedron within it at each step : 165=65

9 Frank Wilczek, at that time, the head of the Center for Theoretical Physics at MIT and a 2004 Nobel Laureate, has a series of articles about the Planck Length within Physics Today. Called Scaling Mt. Planck, these are all well-worth the read. His book, The Lightness of Being, to date, is his most comprehensive summary.

10 Point-free geometry, a concept introduced by A. N. Whitehead in 1919/1920, was further refined in 1929 within his publication of the book, Process & Reality. More recent studies within mereotopology continue to extend Whitehead’s initial work. Also, the study of concepts in pregeometry in physics and model theory are helpful.

11 One might speculate that group theory, with its related subjects such as combinatorics, fields, representation theory, system theory and Lie transformation groups, all apply in some way to the transformation from one notation to the next. Yet, two transformations seem to beg for special attention. One is from the Human Scale to the Small Scale and the other from the Human Scale to the Large Scale. With our range of notations from 201+ to 205 notations, our focus might turn to steps 67 to 69 at the small scale and 134 to 138 at the large scale universe. One’s speculations might could run ahead of one’s imaginative sensibilities. For example, at the transformation to the small scale, approximately in the range of the diameter of a proton, one could hypostatize that this is where the number of embedded geometries begins to contract to begin to approach the most-simple structure of the Planck Length. It would follow that within the small-scale all structures would necessarily be shared. Perhaps the proton is some kind of a boundary for individuation. That is, the closer one gets to the singularity of the Planck Length, the more those basic geometric structures within the notation are shared. Because this structure currently appears to be beyond the scope of measuring devices, we could refer to these notations as a hypostatic science, whereby hypotheses, though apparently impossible to test, are still not beyond the scope of imagination and logic. Also, as the large scale is approached, somewhere between notations 134 to 138, there might be a concrescence that opens the way to even more speculative thinking. Though not very large — between 248 miles (notation 134) and- 3500 miles (notation 138) — it might appear to be silly, truly nonsensical, to begin the search for the Einstein-Rosen bridges or wormholes! That’s certainly science fiction. Yet, if we let an idea simmer for awhile, maybe workable insights might-could begin to emerge.

12 Although the term, Thrust of Life, is used within religious and philosophical studies, it is also the subject of continuous scientific study by groups such as the Center for Science for of Information (Purdue University) through funding from the National Science Foundation.

13 Personal email to me regarding multiplying the Planck Length by 2, he said: “Since space has three dimensions, the number of points goes up by a factor eight, not two, when you double the scale.” Certainly a cogent comment, however, given we have seemingly more than enough vertices, we decided on the first pass to continue to multiply by 2 to create an initial framework from which attempt to grasp what was important and functional.

14 In a personal email to me regarding the initial posting for Wikipedia (opens in new tab or window), a prominent physicist said: “…it’s certainly an idiosyncratic view, not material for an encyclopedia.”

15 The luminiferous aether was posited by many of the leading scientists of the 18th century, Sir Issac Newton (Optiks) being the most luminous. The Michael-Morley experiments of 1887 put the theory on hold such that the theory of relativity and quantum theory emerged. Yet, research to understand this abiding concept has not stopped. And, it appears that the editorial groups within Wikipedia are committed to updating that research.

16 Quintessence, the Fifth Element in Plato’s Timaeus, has been used interchangeably with the aether (ether). It has a long philosophical history. That the word has been adopted in today’s discussion as one of the forms of dark energy tells us how important these physicists believe dark energy is.

17 Roger Penrose inspired the 1998 book, The Geometric Universe: Science, Geometry, and the Work of Roger Penrose. Surely Penrose is one of the world’s leading thinkers in mathematics and physics. He has been in the forefront of current research and theory since 1967, however, his work on Conformal Cyclic Cosmology is not based on simple mathematics or simple geometries. It is based on the historic and ongoing tensions within his disciplines. Though his book, Cycles of Time, written for the general public, it is brings all that history and tension with it.

18 Frank Wilczek has written extensively about the Planck length. He recognizes its signature importance within physics. When we approached him with our naive questions via email in December 2012, we did not expect an answer, but, we received one. It was tight, to the point, and challenged us to be more clear. Given he was such a world-renown expert on such matters, we were overjoyed to respond. The entire dialogue will go online at some time. He is a gracious, thoughtful thinker who does not suffer fools gladly. And because we believe, like he does, in beauty and simplicity, perhaps there will be a future dialogue that will further embolden us.

19 Frank, F. C.; Kasper, J. S. (1958), “Complex alloy structures regarded as sphere packings. I. Definitions and basic principles”, Acta Crystall. 11. and Frank, F. C.; Kasper, J. S. (1959), and “Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures”, Acta Crystall. 12. More recently, this construct has been analyzed by the following: (1) “A model metal potential exhibiting polytetrahedral clusters” by Jonathan P. K. Doye, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom, J. Chem. Phys. 119, 1136 (2003) The compete article is also available at ArXiv.org as a PDF: http://arxiv.org/pdf/cond-mat/0301374‎ (2) “Polyclusters” by the India Institute of Science in Bangalore has many helpful illustrations and explanations of crystal structure. PDF: http://met.iisc.ernet.in/~lord/webfiles/clusters/polyclusters.pdf (3) “Mysteries in Packing Regular Tetrahedra” Jeffrey C. Lagarias and Chuanming Zong, a focused look at the history.

20 The work of Sophus Lie (1842 – 1899), a Norwegian mathematician, not only opened the way to the theory of continuous transformation groups for all of mathematics, it has given us a pivot point within group theory by which to move our analysis from parameters to boundary conditions and on to transformations between each notation. We are hoping that we are diligent enough to become Sophus Lie scholars.

About the author

In 1970 Bruce Camber began his initial studies of the 1935 Einstein-Podolsky-Rosen (EPR) thought experiment. In 1972 he was recruited by the Boston University School of Theology based on (1) his research of perfected states in space-time through work within a think tank in Cambridge, Massachusetts, (2) his work within the Boston University Department of Physics, Boston Colloquium for the Philosophy of Science, and (3) his work with Arthur Loeb (Harvard) and the Philomorphs. With introductions by Victor Weisskopf (MIT) and Lew Kowarski (BU), he went to CERN on two occasions, primarily to discuss the EPR paradox with John Bell. In 1979, he coordinated a project at MIT with the World Council of Churches to explore shared first principles between the major academic disciplines represented by 77 peer-selected, leading-living scholars. In 1980 he spent a semester with Olivier Costa de Beauregard and Jean-Pierre Vigier at the Institut Henri Poincaré focusing on the EPR tests of Alain Aspect at the Orsay-based Institut d’Optique. In 1994, following the death of another mentor, David Bohm, Camber re-engaged simple interior geometries based on several discussions with Bohm and his book, Fragmentation & Wholeness. In 1997 he made the molds to create the plastic tetrahedrons and octahedrons used in the images above. In 2002, he spent a day with John Conway at Princeton to discuss the simplicity of the interior parts of the tetrahedron and octahedron. In 2011, he challenged a high school geometry class to use base-2 exponential notation to follow the interior structure of basic geometries from the Planck Length and to the edges of the Observable Universe.

*****************************************

Afterthought: Could cellular automaton apply to the first 65 doublings from the Planck Length using base-2 exponential notation to PRE-STRUCTURE things?

More than things, as in protons and fermions, could the results of cellular automaton be understood as Plato’s Forms or Eidos (perhaps notations 2-to-10) and Aristotle’s Ousia (perhaps doublings 10-to-20)? Assuming the Planck Length to be a vertex, and assigning the area over to pure geometries, do we have the basis for form, structure, and the architecture for substances? Then, could it be that this architecture gives rise to an architecture for qualities (notations 20-to-30)? And, as we progress in the evolution of complexity, could it be that in this emergence, there is now an architecture for relations (notations 40-to-50)? If we assume an architecture for relations, could the next be an architecture for Systems (notations 50-to-60) and this actually becomes the domain of the Mind? It is certainly a different kind of ontology given it all begins with cellular automaton and base-2 notation provide a coherent architecture (with built in imperfections of the five-tetrahedral cluster also known as a pentastar).

__________________________________

The original Wikipedia article as written in March 2012

The Planck length, base-2 exponential notation, and nesting geometries

Introduction:  This article for Wikipedia was written in March 2012.  It was publicly posted within Wikipedia for a few weeks in April; but on May 2, 2012, it was deleted as original research.” Though there are many referenced scholarly journals, there were no scholarly articles from published academic journals regarding the integration of base-2 exponential notation, nested geometries, and the Planck Length. Wikipedia requires such attributions. It is an encyclopedic reference and the primary references for each article protect the integrity and quality of their published articles. So now, we are attempting to prepare these pages to be read by scholars as well as students.

To date, none of these pages have been formally engaged by a senior editor. Some of this writing has been influenced by students, teachers, other interested thinkers, and by faculty within universities and institutes; however, I (Bruce Camber) take full responsibility for all the mistakes of any kind.  Please let me know when you find one.

Some of the links (to Wikipedia articles and others) have been added.  There have been small edits, yet essentially this is the article that had been submitted, initially posted, and eventually deleted by Wikipedia. Also, to go to the page of calculations, Notations 1-to-203, please click here. To go to a general overview, click here, and here to go to more recent overviews. This work has roots with a display project in 1979 at MIT  with 77 leading living scholars.

*****

On measuring the universe using the Powers-of-Two, Exponentiation, and the Planck Length

Base-2 exponential notation (abbreviated here as “B2”) uses the powers-of-two, exponentiation, and the Planck length to provide a simple, granular, ordering system for information. Also, the process of dividing and multiplying by two is the basis for key functions in science, particularly biological systems (cellular division) and chemical bonding, i.e. bond strength. Although base-2 is more granular than dividing or multiplying by ten, base-ten scientific notation has gotten all the attention.

Base-ten scientific notation (B10).  Within the study of orders of magnitude, base-ten scientific notation, is a simple study.  In 1957  Kees Boeke, a Dutch high-school educator, published Cosmic View.

A Nobel laureate in physics, Arthur Compton, wrote the introduction for this work. By 1968 Charles Eames and his wife, Ray, produced a documentary, Powers of Ten based on that book. MIT physics professor, Philip Morrison, narrated the movie and with his wife, Phyllis, they wrote a book, Powers of Ten: A Book About the Relative Size of Things in the Universe and the Effect of Adding another Zero (1982).

NASA and Caltech maintain a website that keeps Boeke’s original work alive and now people have expanded and corrected Boeke’s work.

There is the on-going work of the National High Magnetic Field Laboratory at Florida State University; they give Boeke credit for inspiring their effort called “Secret Worlds: The Universe Within.”

Just fourteen-years old at the time they initiated their online work, genetic twins Cary and Michael Huang developed a most colorful online presentation that opens the study of scientific notation to a young audience. The concepts were widely popularized with the 1996 production of Cosmic Voyage by the Smithsonian National Air and Space Museum for their 150th anniversary (the 20th for the museum). With IMAX distribution and Morgan Freeman as the narrator, many more people are experiencing the nature of scientific notation.

Yet, the work within base-ten scientific notation has not had consistent limits. Most of this work starts at the human scale and goes inside the small-scale universe and stops well-short of the Planck length. Going out to the large-scale universe, the limit was generally-accepted measurement of the observable universe at that time.

Base-2 Exponential Notation (B2), though analogous to base-ten scientific notation, starts at the Planck length and is based on multiples of the Planck Length. Each notation is a doubling of the prior notation. Here the word, notation,  is also referred to as doublings, groups, layers, sets and steps. Though the edges of the observable universe will continue to be studied, scored, and debated, within the B2 system that measurement will always be a ratio of the Planck length. The power-of-2, instead of power-of-ten, provides a very different key to explore a fully-integrated universe in 201+ necessarily inter-related notations.

Use in computer science and throughout academia

See other bases for scientific notation (within Wikipedia).

1234 = 123.4×101 = 12.34×102  = 1.234×103   =  210 + 210

The powers of two are basic within  exponentiation, orders of magnitude,  set theory, and simple math. This activity should not be confused with the base-2 number system – the foundation of most computers and computing.  Though exponential notation is used within computer programming,  its use in other applications to order data and information has wide implications within education.The term, Base-2 exponential notation is also used to describe the number obtained at each step in an algorithm designed to clarify the form and function of space and time — measurement — operates in the range between the Planck length and the edges of the observable universe.

B2 has applications throughout education.

Geometrical visualization

Consistent across every notation is (1) the Planck length, (2) its inherent mathematics (doubling each result across the 202.34 notations) and (3) basic geometries that demonstrate encapsulation, nested hierarchies of objects, space-filling polyhedra (Wolfram), honeycomb geometries (Wikipedia) and other basic structures that create polyhedral clusters (opens a PDF from Indian Institute of Science in Bangalore). It also opens the door to the work within combinatorial geometries.

These are the inherent simple visuals of base-2 exponentiation.

A simple starting point is to take the tetrahedron within the platonic solids and take as a given that the initial measurement of each edge is just one meter. This is the human scale. If each edge is divided by two and the dots are connected, a tetrahedron that is half the size of the original is in each corner and an octahedron is in the middle. If each edge of the octahedron is divided by two, and the dots are connected, an octahedron that is half the size of the original is observed in each of the six corners and a tetrahedron in each of the eight faces. In a similar fashion those two platonic solids can be multiplied by two. These nested objects have been observed and documented by many geometers including Buckminster Fuller, Robert Williams, Károly Bezdek, and John Horton Conway.

Taking just the tetrahedron and octahedron, base-two exponential notation can be visualized. With just these two objects, each could be divided and multiplied thousands of times to fill space, theoretically without limit. Yet, in the real world there are necessary limits. The Planck length is the limit in the small-scale universe. The edge of the observable universe is the limit in the large-scale universe.

Counting Notations

In this context, the numerical output of any given step or doubling is called a notation and  each instance is represented as a multiple of the Planck length.

Starting at the smallest unit of measurement, the Planck length (1.616199(97)x10-35m), multiply it by 2; each notation is progressively larger. In 116 notations, the size is 1.3426864 meters. From here to the edge of the observable universe (1.6×1021 m) is  approximately 86+ additional notations. The total, 202.34 notations, is a number calculated for us by a NASA physicist using data from the Baryon Oscillation Spectroscopic Survey (BOSS). A figure of 206 notations was given to us by the chief scientist of an astrophysical observatory. The total number of notations will be studied more carefully. Compared to the orders of magnitude using base-ten scientific notation, the first guesses had as few as 40 notations while others more recently have calculated as many as 56. The actual number is between 61 and 62.

Diversity

With each successive division and multiplication, base-2 scientific notation using simple geometries and math can encompass and use the other platonic solids to visualize complexity within each notation.

The Archimedean and Catalan solids, and other regular polyhedron are readily encapsulated simply by the number of available points at each notation. Cambridge University maintains a database of some of the clusters and cluster structures.

Base-2 exponential notation using simple geometry and simple math opens the door to study every form and application of geometry and geometric structures. In his book, Space Structures, Their Harmony and Counterpoint,[1] Arthur Loeb analyzes Dirichelt Domains (Voronoi diagram) in such a way that space-filling polyhedra can be distorted (non-symmetrical) without changing the essential nature of the relations within structure (Chapters 16 & 17).

The calotte model of space filling  will also be introduced.

Because each notation encapsulates part of an academic discipline, there is no necessary and conceptual limitation of the diversity of embedded or nested objects.[2]

History

Geometers throughout time have contributed to this knowledge of geometric diversity within a particular notation. From Pythagoras, Euclid, Euler, Gauss, and to hundreds of thousands living today, the documentation of these structures within notations is extensive. Buckyballs and Carbon Nanotubes (using electron microscopy) use the same platonic solids as the Frank–Kasper phases[3]. The Weaire–Phelan polyhedral structure has even been used within the human scale for architectural modelling and design, i.e. see the Beijing National Aquatics Centre in China, as well as within chemistry and mineralogy. Each notation has its own rule sets.[4] Some geometers have taken the universe as a whole, from the smallest to the largest, and have described this polyhedral cluster as dodecahedral first in Nature magazine and then in PhysicsWorld (by astrophysicist Jean-Pierre Luminet at the Observatoire de Paris and his group of co-authors.

Constants and universals

There are constants, inheritance (in the legal sense as well as that used within object-oriented programming) and extensibility between notations which has become a formal area of study, Polyhedral combinatorics.

Every notation has a Planck length in common.

Every scientific discipline is understood to be classifiable within one or more of these notations. Every act of dividing and multiplying involves the formulations and relations of nested objects, embedded objects and space filling. All structures are necessarily related. Every aspect of the academic inquiry from the smallest scale, to the human scale, to the large scale is defined within one of these notations.

Geometries within the 202.34 base-2 exponential notations have been applied to virtually every academic discipline from game theory, computer programming, metallurgy, physics, psychology, econometric theory, linguistics [5] and, of course, cosmological modeling.

See also

Bibliography

  •     Kees Boeke, Cosmic View, The Universe in 40 Jumps, 1957
  •     An Amazing, Space Filling, Non-regular Tetrahedron Joyce Frost and Peg Cagle, Park City Mathematics Institute, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
  •     Aspects of Form, editor, Lancelot Law Whyte, Bloomington, Indiana, 4th Printing, 1971
  •     Foundations and Fundamental Concepts of Mathematics, Howard Eves, Boston: PWS-Kent. Reprint: 1997. Dover, 1990
  •     Jonathan Doye’s Research Group at http://physchem.ox.ac.uk/~doye/
  •     Magic Numbers in Polygonal and Polyhedral Clusters, Boon K. Teo and N. J. A. Sloane, Inorg. Chem. 1985, 24, 4545–4558
  •     Pythagorean triples, rational angles, and space-filling simplices PDF, WD Smith – 2003
  •     Quasicrystals, Steffen Weber, JCrystalSoft, 2012
  •     Space Filling Polyhedron http://mathworld.wolfram.com/Space-FillingPolyhedron.html
  •     Space Structures, Arthur Loeb, Addison–Wesley, Reading 1976
  •     Structure in Nature is a Strategy for Design, Peter Pearce, MIT press (1978)
  •     Synergetics I & II, Buckminster Fuller,
  •     Tilings & Patterns, Branko Grunbaum, 1980 http://www.washington.edu/research/pathbreakers/1980d.html

References

  1. Loeb, Arthur (1976). Space Structures – Their harmony and counterpoint. Reading, Massachusetts: Addison-Wesley. pp. 169. ISBN 0-201-04651-2.
  2. Thomson, D’Arcy (1971). On Growth and Form. London: Cambridge University Press. pp. 119ff. ISBN 0 521 09390.
  3.  Frank, F. C.; J. S. Kasper (July 1959). “Complex alloy structures regarded as sphere packings”. Acta Crystallographica 12, Part 7 (research papers): 483-499. doi:10.1107/S0365110X59001499.
  4. Smith, Warren D. (2003). “Pythagorean triples, rational angles, and space-filling simplices”. [1].
  5.  Gärdenfors, Peter (2000). Conceptual Spaces: The Geometry of Thought. MIT Press/Bradford Books. ISBN 9780585228372.

External links

Categories: Exponentiation, Base-2, Powers of Two, order of magnitude

An exploration of 101 steps from the smallest measurement, the Planck length, to the human scale, and then 101 more steps out to somewhere near the edge of the observable universe.

Editor’s Note: The very first posting in January 2012 about our work within geometry and base-2 exponential notation (doublings) was within our Small Business School website by Bruce Camber and Hattie Bryant. That site had been live on the web since December 1994.

Here is the very first time we would see the entire universe in just over 201+ steps, all necessarily-related notations.

Perhaps this work could be called, “From praxis-to-theoria.” This working project is dubbed, a Big Board for our little universe. This page is part of a high school geometry class project to use base-2 exponential notation (praxis) whereby the entire universe, from the smallest measurement (Planck length) to the largest (the Observable Universe), is represented in 201+ steps. This project started as a result of studying nested platonic solids. So from the very first notation,  every point is seen as a vertex for constructions.  From a point to a  line to a triangle, then a tetrahedron, octahedron, icosahedron, cube and dodecahedron, form-and-function builds upon itself and within itself. The board’s many blank lines will be filled with facts or conjectures (ideas and concepts, also known as theoria). Eventually real data will be added. The original was created in just a week (December 12-19, 2011). An article about it was posted online in January 2012. It was then updated to include Version 2.0.0.2 of the board, posted  on Saturday, September 15, 2012, however, it is still being updated and will be for a long time to come.  Each notation is to be linked to some of the best research scholars within a discipline that studies things within the range of lengths with each notation.

Big Board-little universeSo, a warm welcome to you… this page provides access to a work-in-progress. Friends and family were the first to be invited to begin a critical review. Now, friends of friends are also being invited! The hope is that the project will be validated in its scope and logic. If the logic and scope are invalidated, the results of that process will be fully reported and analyzed. Is the Planck length the right place to start?  Can a dimensionful number be multiplied by 2?  What are the constants?  Why are universals universal?  To open these questions to discussion, more high school students will be invited to think about this model as a relatively simple way to organize information. College students, graduate students, doctoral candidates, and post-docs will be invited to consider how base-2 exponential notation —  praxis — can become the basis for theoria. Everyone is invited to consider if and how these concepts might be integrated within their own.

Here are links to key working pages for the big board.
• Our first Big Board and today’s Big Board-little universe Chart
Today’s overview of some of the key ideas
First article about the unfolding of the key ideas
An article posted-then rejected by Wikipedia editors

Summary description of this page:   An introduction to collaborative research of an indexed  model of the universe using base-2 exponential notation. Because we start at the Planck Length and go to the Oobservable Universe, these notations are called Planck Notations (PN).

The small-scale universe: PN1 to PN67
The human-scale universe: PN67 to PN135
The large-scale universe: PN135 to PN202+

The back story:  This project began within a high school geometry class in the metro New Orleans area.