Can A Quiet Expansion Challenge the Big Bang?

Legacy: The first rough draft as of Sunday, June 12, 2016

Current work (still in process)

by Bruce Camber, New Orleans

History of the Universe Not too many people question the big bang theory (herein abbreviated bbt). We do. Back in September 2014 for the first time we publicly raised questions about the bbt.

The world-renown Cambridge University physicist, Stephen Hawking, is the leading spokesperson for the bbt. He has become a rock star among scientists because he has been so successful as its primary advocate.

Stephen Hawking
Stephen Hawking in the PBS-TV series, Genius, first aired in May 2016

Within his May 2016 PBS-TV series, Genius, he asks rhetorically, “Where did the universe come from? The answer, as most people can tell you, is the big bang. Everything in existence, expanding exponentially in every direction,from an infinitely small, infinitely hot, infinitely dense point, creating a cosmos filled with energy and matter. But what does that really mean and where did it all begin?” His confidence also exudes from his 1988, best-selling book, A Brief History of Time: From the Big Bang to Black Holes, and even from his foundational writing in 1973 (co-authored with Cambridge colleague, George F. R. Ellis) the highly-technical book, The Large Scale Structure of Space-Time.

Only a fool would dare challenge all this work over so many years.

So, such is life; each of us must sometime play the fool. With these facts and the basic premise established, this posting is a “rough draft.” It should become a first draft by July 4. Given the depth and breadth of the foundations upon which the big bang theory (bbt) currently rests, your comments while this posting is being refined, are most welcomed. If this embedded link does not open your email browser, my address is camber (at) bblu (dot) org or go to the Contact page. There are many key images for the big bang theory such as this image above right. More images will be added over time. Most links related to the bbt go to Wikipedia pages. Images for our model, called a Quiet Expansion (QE), will be added soon.

The key to our model is multiplication by 2, starting with the Planck base units. Those pivotal Planck calculations were done in 1899 by Max Planck. Our simple work of multiplying them by 2, and then each result by 2, over and over and over again began in December 2011. We discovered that you readily emerge at the Age of the Universe and the Observable Universe, all in just 201 steps.

That is crazy, but true. It is called “base-2 exponential notation.” It’s what cells do. It’s a bit like chemical bonding. Bifurcation theory describes another element of its dynamic. In just 201 doublings, layers or groups, you can capture the entire universe in an entirely-ordered fashion! Beyond belief? Our web presence, Big Board-little universe, can provide more background about our rather brief history.

We’ve used the Wikipedia summaries of the big bang. Wikipedia appears to represent the current thinking of most within the relevant scientific communities. These scientists have lived within this theory throughout their professional careers. It is part of their intellectual being. We believe most all of their work can be absorbed within the QE. It is just from the starting point to the inflationary epoch — less than a fraction of a fraction of a second — are pointedly questioned. With a little-but-substantial tweak, we believe all the work on the subsequent epochs can be readily integrated.

The writers within the Wikipedia community overlap with those within these scientific communities. Wikipedia, constantly in the process of refining their writing, provides several summaries of the History of the Universe based on the most current work of leading thinkers within the scientific community. The work that is based on observations has a place within the QE. Our guess is that those observations will become richer and more informative when the QE parameters and boundary conditions are engaged.

Are space-and-time unbounded or bounded? If bounded, is our universe a container universe? Are the Planck base units and all the dimensionless constants part of the definitions of the boundaries between the finite and the infinite?

Within the current bbt analysis gravitational waves arise from within their inflationary period. The bbt thought leaders ascribe a much faster-than-light expansion just after the big bang. And, that begs the question: What are the preconditions of superluminal events and motion? There haven’t been any answers since 1902 when Jacobus Kapteyn made his initial observations, since the 1983 “superluminal workshop” at Jodrell Bank Observatory, and since the subsequent studies of microquasars, their accretion disks and such phenomenon as magnetorotational instability. It is all a very special language, logic and reality; the observational results are well-defined; yet, we believe the most-penetrating conclusions are pending.

In 1970 there were competing theories about the beginning of the universe. By 1990 the bbt had become dominant. In 2011 our little group of high school geometry people began to explore the interior structures of the tetrahedron and octahedron and that is when we found within our tilings and tessellations, just over 201 base-2 exponential notations from the Planck base units to the Age of the Universe and to the Observable Universe. That continuum appeared so simple, we first engaged it as an excellent STEM (Science-Technology-Engineering-Mathematics) tool. Yet, with further study and thought, it also seemed to challenge some of our basic commonsense assumptions about nature (the back story). As we studied our new little model, the bbt continued to solidify its dominance within the general culture and we started to question it. We began to believe that the actual physics of the first moments of creation might be better defined by the simple mathematics of a quiet expansion, especially the first 67 notations. Those 67 have never been recognized as such and certainly have not been discussed within academia. The great minds throughout the ages have been unaware of the 201+ base-2 notations and those first 67 notations. So mysterious were the 67, we began more actively to think about them and to make some postulations about their place and purpose.

Our first posting about this Quiet Expansion is a result of our naive, informal, and often idiosyncratic studies of the Planck Base Units, base-2 exponential notation, and an inherent geometry assumed (hypothesized, hypostatized, and/or imputed) to be within every scale (doubling, layer, notation, step, etc) throughout the universe. We have moved slowly. Having backed into the Planck base units from our simple exercises in a high school geometry class, we were not at all sure of ourselves. So, after observing our results for a couple of years, we began asking the question, “Could this be a more-simple, more-inclusive model of the universe than the big bang theory?” Because we only have the beginnings of an outline of a model, we continued our quest and continued to ask more questions:

Who? What? Why? When? Where? How?

Who: The history of the Big Bang Theory (bbt) is highly documented. It is an intellectual cornerstone within experimental and theoretical physics, cosmology, and astrophysics.
What: To challenge the bbt appears foolhardy at best. Yet, there are many, many reasons to challenge it, but most of all because (1) it is overly complex and confusing, (2) it is not very good philosophy, and (3) it is very poor psychology.
Why: The first three key parts of the bbt, involving substantially less than a trillionth of a second, are based on hunches and a need to shoehorn data to support the model.

Wikipedia says, “Planck scale is beyond current physical theories; it has no predictive value. The Planck epoch is assumed (or theorized) to have been dominated by quantum effects of gravity.” We say that the Planck scale is the starting point for the initial 24 notations (de facto defined by the bbt) and that these notations are shared by everything, everywhere in the universe. Painfully aware of the limitations of our vocabulary, these first notations are considered to be archetypal forms, structure and substance. Archetypal is used in the sense of the original pattern or model by which all things of the same type are representations, the prototype, or a perfect example. For more, see each of the four pages (24 columns) encapsulating notations 1-24 (opens in a new window or tab).

Both models have made key assumptions. We believe the QE model is internally more consistent, imaginative, and stimulating.

The key: More than just the bbt‘s four forces of nature within the Planck scale, we assume a certain unification of all five Planck base units and those constants that define them, and that this unification is carried through the entire 201+ notations to the current time and present day (until proven to be otherwise). The Planck base units are defined by length, time, mass, temperature and charge. These Planck units are further defined by the speed of light (or special relativity), the gravitational constant (or general relativity), the reduced Planck constant (or ħ or quantum mechanics), the Coulomb constant (or ε0 or electric charge or electromagnetism), and the Boltzmann constant (or kB or of temperature).

The Planck scale is not beyond logic, numbers, and conceptual integrity. Homogeneity, isotropy and simple logic rule. Yet, within the Quiet Expansion (QE) model, we have followed a simple logic and placed the Planck Temperature at the top of the scale, just beyond the 201st notation and then it goes down, approaching Absolute Zero. We are increasingly finding a simple relational logic between the Planck base units. Of course, this logic will be revisited with every future analysis of the QE model. Within the QE model, the Planck Charge, a Coulombs value, is taken as it is given. Within the bbt, the Planck Charge is ignored and the bbt value is postulated to be as large as possible. Their measurement is given in GeV units, one billion electron volts. Add 1016 zeroes to it and you have a charge unlike any other! It is the penultimate, grand assumption that truly requires a leap of faith!

To begin to understand all these numbers and their correlations, questions are asked, “Are these all non-repeating, never-ending numbers like Pi? Are all numbers that are non-repeating and never-ending somehow part of the infinite yet also the beginning of quantum mechanics?” The suggestion has been made that we carry out each number 10 decimal places, and if need be, 100 decimal places, and possibly even 1000 decimal places, to see if patterns can be discerned.

The QE model holds that things are simple before complex and everything is related to everything. Imputed, hypostatized and/or hypothesized are pointfree vertices and simple geometries as the deep infrastructure that gives rise to the work on combinatorics, cellular automaton, cubic close packing, bifurcation theory (and the Feigenbaum’s constants), Langlands program, mereotopology ( point-free geometry), the 80-known binary operations, and scalar field theory. Here are people working on theories and constructions of the simple, yet their concepts are anything but simple.
When: In the very beginning… Wikipedia says that the Planck epoch requires speculative proposals, a “New Physics” such as “…the Hartle–Hawking initial state, string landscape, string gas cosmology, and the ekpyrotic universe.” Each is a conceptually-rich, dense jungle of ideas. Cutting through that entanglement is only for the highly-motivated and academically astute. Most of us will just go on to the grand unification epoch, in search of a logical system that builds consistently upon itself. About the bbt model, Wikipedia simply says, “The three forces of the Standard Model are unified.” Of course, the QE goes much further, however, first consider a bbt problem. Electromagnetism, gravitation, weak nuclear interaction, and strong nuclear interaction are most often related to relations defined above the 65th notation.

Wikipedia says, “Cosmic inflation expands space by a factor of the order of 1026 over a time of the order of 10−33 to 10−32 seconds.[1] The universe is supercooled from about 1027 down to 1022 kelvins.[6] The Strong Nuclear Force becomes distinct from the Electroweak Force.” [1] (Our emphasis) First, consider that the Planck Temperature is 1.416 83×1032 Kelvin. The bbt totally skips the cooling from 1032 to 1027 Kelvin. It does not address what causes the cooling to 1022 Kelvin. Also, consider the amount of expansion and the short duration assumed in their statement above. To create that much space in that short of an interval would require light to travel so far beyond its normal speed, it would constitute the penultimate anomaly.

Also, because the bbt begins at the Planck Temperature, they truly need a supercooled concept. With the Quiet Expansion these temperatures are all superconducting being well below the superconducting transition temperatures. Perhaps the very concept of temperature will become better understood as a result of our struggles to define a different model of the universe.

About this inflationary epoch, Wikipedia says, “The forces of the Standard Model have separated, but energies are too high for quarks to coalesce into hadrons, instead forming a quark-gluon plasma. These are the highest energies directly observable in experiment in the Large Hadron Collider.”

Within the QE, if a quark-gluon plasma requires 1012 Kelvin, it is not possible until up around Notation 136 where the temperature is up to 1.92016×1012 Kelvin. Notation 136 is 4.6965×10-3 seconds from the singularity. One second is between Notations 143 and 144. Also, the Kelvin scale is counter-intuitive in many ways. The temperature of the Sun is about 5,778 K. Within the QE, that is expressed between Notations 107 and 108 (7.153178×103 K). The human temperature at 98.6 degrees Fahrenheit is 310.15 Kelvin which is between Notations 103 and 104 (4.47073×102 K). Also, at Notation 103 we find the Planck Length is now .163902142 millimeters or 1.63902142×10-4 meters or about the size of a human egg.

The exacting nature of the correlations between the multiples of the Planck base units is just being explored for the first time. Within the QE everything everywhere is related through simple mathematics.

In Wikipedia, their category experts say, “The physics of the electroweak epoch is less speculative and much better understood than the physics of previous periods of the early universe. The existence of W and Z bosons has been demonstrated, and other predictions of electroweak theory have been experimentally verified.”

Finally the the bbt gives us something that isn’t incomplete or highly speculative. Yet, even with such assurance, the logic of the bbt is difficult to follow. Again, within the QE model the only duration that would allow for W and Z bosons is about 30 notations away, somewhere around notation 65. There is just not enough “conceptual” space and time for elementary particles and their effects.

By the way, within this simple, highly-integrated progression, there is the first measurement that has a visceral meaning for us. At Notation 32 the mass of the universe is 93.48 kilograms or about 206 pounds. By Notation 40 it is up to 2.39×104 kilograms. The universe is bulking up quickly and it is creating space and time as it goes.

Also, consider this unusual concept: within every notation, the QE model aggregates base-8 pointfree vertices using scaling laws and dimensional analysis (recommended by Prof. Dr. Freeman Dyson). There are single line entries for both the base-2 and base-8 progressions within the horizontally-scrolled chart.

— most active edit area—

Big Bang Theory (bbt)

Planck epoch

Planck time:
<10−43 seconds
Planck Temperature:
1032 Kelvin
Planck Energy:
1019 GeV
First key bbt error


<10−36 seconds
1016 GeV

Inflationary epoch
Electroweak epoch

<10−33 s to <10−32 seconds
(QE syncs to bbt time.)
1028 K to 1022 Kelvin
Expansion: 1026 meters
Editor: “science fiction”
Second key bbt error

Quark epoch

Third error: >10−31 to
>10−12 seconds
1012 Kelvin
Notice there is a bbt/QE convergence

Hadron epoch

10−6 seconds to
10−1 seconds
1010 Kelvin to

109 Kelvin

Lepton epoch

1 second to
10 seconds
109 K
Note: QE temp higher

Photon epoch-Nucleosynthesis

10 seconds to
103 seconds to
1013 seconds
<380 ka
1011 Kelvin to
109 Kelvin to
103 Kelvin
10 MeV to
100 keV


Matter-dominated era

47 ka (47,000 years) to
10 Ga (10×109) years
104 Kelvin to
4 Kelvin


380 ka (380,000 years)
4000 Kelvin

Dark Ages

380 ka to
150 Ma (Mega-annus) or
150 million years
4000 Kelvin to
60 Kelvin

Stelliferous Era

150 Ma
(150 million years)
100 Ga
(150 billion years)
60 Kelvin to
0.03 Kelvin


~150 Ma to
1 Ga
>60 K to
19 K

Galaxy formation and evolution

1 Ga to 10 Ga
19 Kelvin to 4 Kelvin

Dark-energy-dominated era

>10 Ga
<4 K

Present time

13.8 Ga
2.7 Kelvin

Quiet Expansion (QE)

Notations 0-24

0 = Planck base units

Planck time:
5.39106×10−44 seconds
Notation 1: 1.0782−43 s
Notation 24: 1.809×10−36 (s)
Notation 0: 1.416×1032 Kelvin
Notation 1: 4.4×10-27 (K)
Notation 24: 3.69×10-20 (K)
Notation 0: 1.8×10-18 Coulombs
Notation 1: 3.7×10-18
Notation 24: 3.14×10-11 (C)

Notations 25 to 31

Notation 25: 1.8×10−36 seconds
Notation 31: 1.157×10−34 (s)
Notation 25: 6.29×10-11 (C)
Notation 31: 4.02×10-9 (C)

Notations 32 to 40

Notation 32: 2.31×10−34 seconds
Notation 40: 5.927×10−32 (s)
Notation 32: 1.89×10-19 Kelvin
Notation 40: 2.42×10-17 (K)
Notation 32: 6.94×10-26 meters
Notation 40: 1.77×10-23 (m)
Notation 32: 8.05×10-9 Coulombs
Notation 40: 2.06×10-6 (C)

Notations 41 to 104

Notation 41: 1.18×10−31 seconds
Notation 104: 1.09×10−12 (s)
Notation 41: 4.84×10-17 Kelvin
Notation 104: 4.47×102 (K)
(310K = 98.33°F, 36.85° C)

Notation 105 to 142

Notation 105: 2.18×10−12 (s)
Notation 142: 3.0×10−1 (s)
Notation 105: 8.94×102 Kelvin
Notation 142: 6.14×1013 (K)

Notations 143 to 147

Notation 143: 6.01×10−1 (s)
Notation 147: 9.61 (s)
Notation 143: 2.45×1014 Kelvin
Notation 147: 3.93×1015 (K)

Notations 147 to 154 to
Notation 187

Notation 147: 9.6185 seconds
Notation 154: 1231.1 (s)
Notation 187: 1.05×1013 (s)
or 10,575,741,215,500 (s)
or 320± thousand years
Notation 147: 3.932×1015 Kelvin
Notation 154: 5.03×1017 (K)
Notation 187: 4.32×1027 (K)
Notation 147: 3.346×1026 (C)
Notation 154: 4.28×1028 (C)
Notation 187: 3.67×1038 (C)

Notations 184 to 201

Notation 184: 1,321,967,651,940 seconds or 41,919.31 years
Notation 201: 10 billion years
Notation 184: 5.4×1026 Kelvin
Notation 201: 7.0×1031 (K)

Notations 187

10,575,741,215,500 (s)
320± thousand years
Notation 187: 3.6×1038 (C)

Notations 187 to 196

Notations 187: 320,000+ years
Notation 196:
171.2± million years
5,414,779,502,320,000 seconds
Notations 187: 4.3×1027 Kelvin
Notations 196: 2.2×1030 (K)

Notations 187 to 204+

Notation 196:
171.2± million years
Notation 204+:
Distant future
Notations 196: 2.2×1030 (K)
Notation 204: 1.416×1032 (K)

Notations 187 to 189

Notation 187: 1.05×1013 seconds
or 320± thousand years to
Notation 189: 1.3± million years
Notation 187: 4.32×1027 Kelvin
Notation 189: 1.72×1028 (K)

Notations 187 to
Notation 201+

Notation 189: 1.3± million years
Notation 201: 10 billion years

Notations 187 to
Notation 201+

Notation 201: 10 billion years
Notation 201: 7.08×1031 Kelvin

Notation 201+

Notation 201: 13.8 billion years
Notation 201: 7.08×1031 Kelvin
At the 41st notation there are 10,633,823,966,279,326,983,230,456,482,242,756,608 pointfree vertices. The base-2 simple doublings could be aggregating structure as groups or sets. Defined by the Planck base units, in the range 41-to-60, we hypothesize that these are the domains for archetypal relations and systems. There are 549,755,813,888 base-2 pointfree vertices at Notation 41 and 5,070,602,400,912,917,605,986,812,821,504 at Notation 104.

The bbt’s Quark Epoch generalizes 63 of the QE notations, from 41 to 104. These notations within the QE model are foundational so perhaps this comparison to Quark Epoch is a key. Consider the estimated requirement for temperature. The bbt epochs can not begin until the temperature is cool enough. Given that temperature requirement, within the QE model, the Quark Epoch would not begin until up-and-around Notation 136 where the temperature has finally risen to 1.9201×1012 Kelvin. If that is the right range, as suggested by proponents of the bbt, less than a second has transpired, the universe has a diameter of about 874 square miles and a mass of about 1.896×1032 kilograms.

Within the QE model from around Notations 65 to 69 is the transition from the small scale to the human scale. This “human scale” is the middle third of the 201 notations, i.e. 67-to-134. Even though two-thirds of the way through the 201 doublings, less than a second has transpired from the start.

In the Quark Epoch the bbt and QE begin to cross paths and overlap. Wikipedia says, “Quarks are bound into hadrons. Over the hadron epoch, the process of baryogenesis results in an elimination of anti-hadrons (baryon asymmetry).” As noted within Wikipedia, some of these perceptions come directly out of the laboratory, such as CERN in Geneva, where this phenomenon has been observed. So, other than the improbable placement within the time/temperature curve, all processes herein after become readily integrated within the QE model. The bbt and QE have overlapped and begun to become simpatico.

A key question within the QE model is, “What is a notation?” Also known as a cluster, doubling, group, layer, set, and/or step, each word is perspectival and each notation is dynamic, always in the process of being defined, right up to the current time within the 201st notation. Each notation has an active role in defining who we are and what this universe is; and, each notation has an active role in defining all other notations. Today, right now, all of these notations activelyf define humanity or the human scale (67-to-134), must therefore be something like the archetypes of forms and functions (notations 1-to-67) that define our deeper beingness. The notations from 134-to-200 define our planetary and galactic systems and this is where most of the work of those physicists, cosmologist, and astrophysicists have worked.

In just a few more notations, between 142 and 143, the universe is at the one second mark. This measurement is most often used to determine the speed of light. Yet, as noted in earlier postings, within every notation, the Planck length divided by the multiple of the Planck Time renders an approximation of the speed of light. It is just commonsense when we see that the speed of light plays prominently in the definitions of Planck Length and Planck Time.

The question to be answered, “What is the meaning of temperature? …within the bbt? Within the QE model, we impute that it is the total temperature throughout the area defined by the notation (or cluster, container, domain, doubling, group, layer, or step). This measurement within the Hadron Epoch within the bbt is now lower than it is within the QE. There is a natural correlation between all these numbers within the QE simply because they start with the same definitional characteristics (the Planck base units) and the evolution of those numbers using base-2 exponential notation. The ratio of length to temperature renders .73322+ ratio. That result is currently being analyzed, space-to-temperature or kelvin per meters.

In 1972 George Ellis and Stephen Hawking began to explore the boundary conditions that define our universe between 10-13 centimeters (elementary particles) and 1028 cm, the assumed radius of the universe. They did not approach the Planck base units which would have expanded their range to 1.616199×10−35 meters (Planck Length) and then it would have tucked them in at about 5.1942×1025 meters according to current best guesses regarding the Age of the Universe.


With very few exceptions, it was not until Frank Wilczek (MIT) wrote a series of articles,
in 2001, Scaling Mt. Planck, (Physics Today), did anybody think these Planck numbers amounted to anything more than numerology. It would take another ten more years before we would come along, naively doing our thing with base-2 exponential notation, so we are confident that all the proponents of the big bang have not engaged our quiet expansion model.

Earlier it was observed that the big bang is not good philosophy and it is bad psychology. Philosophy is taken as a study of first principles and systems, the universals and constants that create the boundary conditions as well as the continuity equations that bind our universe together. Since 1972, especially with the very key question about the very nature of the first microseconds, the bbt has not progressed very far. Their Planck epoch is still mysterious. It is bad psychology for that very reason. It is so disjointed, so out of touch with anything human, it de facto promotes a certain form of nihilism.

Theories should have elegance, beauty, coherence, and simplicity. Children should be able
to begin to understand. And with the QE, children quickly begin to understand 2 times 2.
We just have to carry it out a few more places for them.


Disclaimer: Our charts and discussion are our first time to make a comparative analysis
between the big bang theory (herein abbreviated bbt) and our Quiet Expansion (QE).
Silly errors are inevitable. We are neophytes, not scholars, within these fields,
so please point out any of our failures with logic, math, and physics. We will be most grateful.

This ends the first story about two very different models of the universe. Of course, it is a story that is to be continued.


The Shortest Article (perhaps with the longest reach)

Some may say these are my assumptions, others first principles, and then the judging ones, silly, nonsense and the like. My response is simple: You are all right. It is all of the above.

  1. Everything starts simply. Complexity always emerges from something more simple.
  2. Everything is related to everything throughout the universe and throughout all time. The universe is a highly-integrated system.
  3. Continuity-order, symmetry-relations, and dynamics-harmony are fundamentally within everything, everywhere for all time.  It is the basis of all things within space and time and begets space and time.

Thank you.


Part II: The Finite and the Infinite

There is “The Observable Universe” (and everything within it) and then there is Beyond All Space and Time  (link goes to Part I: First Principles)   Author: Bruce Camber.

1.  Introduction

After three years of reflection on our Universe View,  I wrote up yet another summary listing of some of the steps we had taken since December 19, 2011. On that December day, as those five classes were happening, it seemed like we had gone through a door that had not been opened. I wondered, “Why can’t we find any discussions about this simple structure of our universe?”  Beyond a simple ordering system based on the nested geometries of octahedrons and tetrahedrons, it seemed like it could have other useful applications. Nevertheless, my precautionary instincts kicked in. We would go slowly. Our work would be incrementalism at best. Plus, it has been difficult to get solid feedback.  In these days there seems to be a bit of fear of being wrong.

We asked, “How can it be wrong especially if it’s based on such simple logic, simple math, and simple geometries?” Of course, our model became a teaching tool.  It involved science, technology, engineering and mathematics, four of the cornerstones of invention and innovation. We imagined that the worst thing that could happen is being faulted for being overly simplistic.

So what?

The stakes are obviously very high. Our world is coming apart at its seams simply because there is no compelling integrative system of understanding of the sciences, the world’s theologies, and the diversities within the human family and her cultures.

Yet, we all share great commonalities that start from conception and birth.

What happens to us?

As a very little baby, each of us quickly learns there is a “You” and a “Me.”  There is an object out there and there is a subject in here. The emphasis is usually all about the “Me” so much so it has become a common expression in the culture, “It’s all about me.”  Narcissism is all about Me. Barack Obama is all about Me. Vladimir Putin is all about Me. Throughout history leaders are often clearly narcissistic and it is usually quite obvious these models ultimately do not work very well.

2. History Lessons: The Subject-Object problem is as old as history.

Which is more fundamental, the Subject or the Object?  The question has been debated in some form for millennium. It is only in this century and in this time that we can finally break through this historic problem.  We have to.  It seems that human survival is dependent on it.

From 1973 through 1980 I worked with a professor who uniquely focused on the Subject-Object problem.   His focus was on the hyphen between the Subject-and-Object.  He would say things like, “The relation is the primary real and space and time are derivative.”

But again, how so? So what?

If we add the words, “The relation is the primary real between the Finite and the Infinite and space and time are derivative,” we begin getting closer to being able to explore the question, “How does all that work?”

First, we could observe that our relatively new Universe View with its 205+ notations, now called our Universe Table, has taken all of space and time and put the two into a finite container. It necessarily brings the Infinite into the equation yet also appears to puts the Infinite out of reach. That could be controversial, however, it is not out of reach.

3. Constants, Universals, and Reality

The universals and constants seem to provide a bridge between the two.  The universals and constants seem to exist independent  of all space and any time yet also seem to be necessarily dependent  on all space and all time.

Also, along our path we discerned that the 205+ exponential notations imposed a simple ordering scheme.  The notations impose a certain continuity within the universe. The simple geometries within this scale impose an inherent structure that has both symmetries and asymmetries. As the two create relations, the ;door opens to an actual   time or applied time (historic time) and there are dynamics that have a certain harmony and an abundance of dynamics that are clearly dissonant.

Using just this schema alone, we then discerned that these categories imposed an inherent value chain within the very being of science, theology, business and culture.  If order / continuity, relations / symmetry and dynamics / harmony were taken as our first-phase definition of Infinity, it seemed as though we were able to duck under the most specialized language of science – theology – business – culture yet use language that is applicable to all four.

We believe that these three groups are the most simple perfections of form / function.

So what do we do with it?

4.  Perhaps the beginning of a breakthrough:  Could all of life be a ratio?

In December 2013 I sent a note out to an online group called the Polyhedrons.  Mostly mathematicians, and most geometers within that group, they are quite sophisticated and often I barely understand what they are discussing.  Yet, I wanted some feedback on our little project and now we had a student who had entered his work on the Universe Table into the National Science Fair.

Of the few responses, one came from Steve Waterman, a geometer-mathematician who in the 1990s defined an entirely new class of Polyhedron.   Yet, within his voluminous website, he especially wanted us to focus on his work with the constants.  One of the leading global arbiters of scientific constants is the US National Institute for Science & Technology (NIST).  In March 2014, after a few lengthy conversations about how NIST defined these constants (over 300) and how the same constants could be generated through ratios of any number of combinations of constants, I finally began to grasp the extraordinary thing that Steve Waterman has done.

His work is so profound it took awhile to sink into my thick skulls.  I had to have some confirmation that I wasn’t racing ahead to erroneous conclusions.  I contacted a Brown University professor of mathematics, a former NIST scientist, and the author of several basic books about the foundations of mathematics.  He brushed it aside, ” There are always people who wish to sum up or create the world using a few principles. But it turns out that the world is more complicated. At least that’s my opinion”

Of course, he is right.  And de facto, we fall into the group that he has criticized.  Yet, with our simple starting points, we have discovered an exceeding complex universe within relatively simple domains.

There is something more going on here.

If we add the three ratios together, 1/3 + 1/3 + 1/3 we get 1.  If we calculate the ratio and add them together we get .999999+.  Something is lost.  In a dynamic tension, we get wholeness.  When we look at the parts as an object, .33333+ we lose something and the result is slightly off.

NIST lists 335 constants ; all have been defined as a ratio in much the same way Planck calculated his constants.  Reducing them to a number, an actual size that corresponds with the NIST measurements, gives us a few clues as to how things are ordered, key components of the relations, and a door to explore the functionalities in the transformations from one notation to the next.

There is a lot of work to do here and as of this writing, all 300+ NIST constants are now in the pipeline for scrutiny and analysis.

What do you think?


Center for Perfection StudiesThe Big Board–Little Universe Project 

What is finite? And, what is truly infinite?

“Finite or Infinite? Is That The Question?”    (link goes to Part II)

Some of our high school students think our scientific community makes the study of Science, Technology, Engineering and Mathematics (STEM) all too difficult to understand and overly complex by defying a certain commonsense logic. (Reference #1)

We have been studying simple math and simple geometries from the smallest possible measurement of a length to the largest (Reference #2). It appeared to some of the students, based on this work, that the universe is obviously finite. They have been told that intellectually and historically, it is an open question. For them, “Make a choice and see where it takes you.”

The students with strong faith statements said, “Only God is Infinite. All things within space and time are finite.” (Reference #3) When asked about all the universals-and-constants and space-and-time, the concurrence is that these are the access paths, interconnections and transformations between the Finite and the Infinite.

For the best of these students, asking the question, “What is the Infinite?” is like asking the question, “Who is God?” And, they have answers.

Of course, as a result of a little coaching, they say, “First, God is Perfect.” When asked, “What is perfection?” they echo their coach: “Perfection is order-continuity, relations-symmetry and dynamics-harmony, all rolled into one.” (Reference #4) That amounts to an understanding of the Infinite without importing all the related history and revelation from the various faith statements within our very short history throughout our little world. The Finite is another story. We turn to many people from Euclid to Einstein for inspiration to provide the academic and religious communities with our simple observations and assumptions.

Hardly postulates and axioms, our statements are a praxis in-search-of theoria:

If these statements are taken as a given, then what kind of universe and what kind of science do we have? Should we re-examine the use of infinity throughout the ages going back to the ancient Greeks? Should we reconsider the theory of indivisibles? And, perhaps we should even reconsider the very nature of the Big Bang and its theory.

Of course, that is our agenda (Reference #8),   our current focus for the immediate future.


1. One of two key general overview and working article,  Order in the Universe

2. One of the earliest reflections on all our efforts and work: Is it true that everything starts most simply?

3. Initially written in November 2012, just what is the nature of belief?

4. In light of those constants, universals and the finite-infinite relation, the nature of perfection seems to follow:

5. Examining basic structure in basic ways: Simple View of the Universe

6. Our first look at the progression of doublings.  This listing was written to accompany an article for Wikipedia: Written in March 2012 to support an article for Wikipedia

7. There are somewhere over 201 base-2 exponential notations (doublings, domains, layers or steps) within the Known Universe.

8. Another analysis of key points: There are 15 in this article.

Even between atheists and believers

Perhaps all it comes down to is an answer to the question, “Whose metaphor is more meaningful?” You will not find many atheists who deny science. They do not deny the constants and universals that are always in the back of the science textbooks.

There are three constants within the sciences that remain clear, in spite of quantum mechanics. The first is that there is order and continuity in the world. It is the basis of knowing. In every discipline there are multiple parameter sets where this is true. Beginning in mathematics, a rather pure form of thought, abstraction and representation, we then move into physics. It has multiple parameter sets as well. There is one for Newtonian mechanics, another for General Relativity and Special Relativity and yet another for quantum mechanics. Then chemistry and biology have their own parameter sets. All these parameters simply establish the boundary conditions of what is being measured within them.

Each has a formalized language. And, each has a metaphorical language that pushes into the edges of the unknown.

The sciences all embrace varying definitions of relations yet all of these definitions are understood by a symmetry function.

Specialized disciplines with each of the sciences hypothesize about the nature of the unknown, just beyond their limits of knowledge, and all these hypotheses are a study of the deepest dynamics of their discipline. The experience of insight, the “ah-ha” of the creative surge, is experienced as a concrescence of symmetries or harmony.

The atheists mostly object to the use of specialized language. They understand rules, mores, and societal law and order even though many are nihilistic, others narcissistic, and many both.

Yet, change will come. Some of these folks will begin to realize that time is not a fundamental frame of reference and that there are qualities of life that permeate everything in every way, and that these qualities empower order, relations, and dynamics, and that these three scientific functions with the faces of continuity, symmetry and harmony just might also be understood with very personal language. When and if they do, they are on their way to create a personal bridge to religion and some of the brave among them just may cross it.

Where is the Good in Science, Business, and Religion?

Please note:  Many pages within The Big Board-little universe Project were originally posted on the web within the Small Business School website.  Some links still go back to the original site.  If so, please your back button to return to this page. Thank you.

All three major domains of human activity — Science, Business & Religion — are fraught with travail and have been blemished with the worst of human behavior. Notwithstanding, there is a deep ethical bias within science which is also an essential infrastructure of business, and it is the heart of good religion.


The circular color chart opens the door on the story. This chart seems to represent all the energies,  negative and positive, within our finite universe, including our finite world, and our finite life. Using Cartesian coordinates as the container, here the x-axis (horizontal axis) is the totality of time. The vertical y-axis becomes the totality of space. This work emerged from our earlier discussions about foundations.

These thrusts -the energy and purpose – are the most basic forms/functions of life. Though part of our business formulations for many years, this circular image marks the first time it has been used as a comprehensive valuation structure and the basis for modelling the universe (a very large file, may open slowly).

Above the x-axis are all the constants and universals that define who we are, our life, the arts, sciences, business and religion. Below that x-axis — domains that involve so much of human activity — is the antithesis of Order/Continuity, Relations/Symmetry, and Dynamics/Harmony.

The antithesis of these form/functions create a de facto ethical platform by which we can begin to judge ourselves, our businesses, our religion (including atheism), and our political and social organizations.

Of course, this is a first pass at a complex subject addressed by a relatively simple person trying to make sense of it all. There will be many more updates to come.

An earlier article about the constants and universals anticipates this chart but was prior to the chart’s development. Title: Just what are we to believe about anything?

The first use of the chart in June 2014 was within the article, Is There Order In The Universe?

The Big Board-little universe in a horizontally-scroll chart (our current work)