Burst the big bang bubble!

It lacks continuity, symmetry and harmony.

In the Big Board-little universe model using base-2 notation from the Planck Time to the Age of the universe, the entire physical universe is contained within just over 200 notations that are highly-integrated and totally-predictive. Notations are also known as clusters, doublings, groups, sets or steps. Within the first second of the universe (between notations 143 and 144), there is more than enough “natural inflation” from the Planck Charge to get “things” going. As a result of studying and working with this model since December 2011, there are many-many facets to explore, however one of the most important is that this model logically suggests that time is derivative and that the finite and the infinite are perhaps best understood in terms of continuity, symmetry and harmony.1

Continuity. Though an unusual way to define infinity, even with quantum indeterminacy, continuity throughout the universe is the bedrock of science, logic, and rational thought. Numbers clarify this continuity. Carried out a billion places, the universe and its systems around us replicate day after day with utmost precision. Within this model, continuity is more fundamental than time; it begets time.

molecule
The complexity of a single molecule

Symmetry. The second face of the infinite is symmetry. Though so much of life is asymmetrical, the deepest examination of any physical thing begins to reveal deeper symmetries. Numbered relations define those symmetries and the universe appears to be tiled and tessellated deeply within every notation throughout the model. Here symmetry is more fundamental than space; it begets space.

Harmony. Speculating, it is hypostatized that two symmetries begin interacting within a notation and then across notations, and though possibly not quite perfect, the interaction of the symmetries perfects the moment for the observer or for the notations involved. Therefore, we have moments of perfection within our experiences of the universe.2

Our studies. At this point in our studies, there is not much more we can say about how the infinite defines the model and what the model says about the very nature of the infinite. These three insights, although reflective of the model, in part come out of a study of a moment of perfection in 1972,3 then from studies of the book, Finite and Infinite: A Philosophical Essay (Austin Farrer, Oxford, Dacre Press, Westminster, 1943), and from an application to a business model.4

These three qualities became the bedrock for our model of the universe and for discussions about the shared nature of the finite and infinite.

What difference does it make? First, it is a clear contrast to the nihilism of big bang cosmology. Building in strength and popularity over the past 30 years, that nihilism has had a lot to do the fraying of our little world. So much is out of control and spinning apart. Money is not the issue. What we believe and how we believe is. Hope is. Charity is. Integrity is.

bblu

What is 5000 to 13.8 billion years?  The finite and infinite relation has been the focus of humanity for as long as we have been recording our ever-so-short history. In light of 13.8+ billion years, five thousand years of records is, of course, quite short. We’ve just begun to make sense of it all.

Today in history. The finite is usually associated with physical, limited things. The infinite is often capitalized and associated with godly things, the eternal and everlasting. To our knowledge, Max Tegmark is the first theoretical physicist who has suggested that the concept of the infinite be abandoned. His rationale is that it gets in the way. He cannot make it work for the science he wants to create. Within these many articles, we hope to convince him, Hawking, Guth and so many others to re-engage our simple definition of the infinite. It does not require a religion or religious beliefs. Notwithstanding, it also doesn’t fly in the face of those who believe in the Infinite.

We can all begin to tolerate each other.

This is our simple introduction to a very large topic and we will return to this page often to expand its range and its depth.

1 A general introduction was the prior homepage.
2 This construct was introduced within these pages at the end of the year, December 2015.
3 This construct goes back to work in 1972 at both Synectics Education Systems in Cambridge, Massachusetts and the Harvard Philomorphs with Arthur Loeb and Buckminster Fuller.
4 The original construct was used as the foundation of a business model for a weekly television series, Small Business School, that Bruce Camber and Hattie Bryant started in 1994. It aired on PBS-TV stations throughout the USA and on the Voice of America around the world for over 50 seasons (2012).

###

…big bang cosmology in light of a quiet expansion

Many postings focus on the big bang theory. It is a flawed theory:

  1. September 10, 2014: Quiet Expansion
    Do the dynamics deflate the big bang theory?
  2. Summer 2016:  The first four epochs
  3. For the general public (this page, below):
    How did the universe begin? And, what does it mean?
    Could a Quiet Expansion impact the Big Bang?
  4. For the academic and scientific communities:
    https://bbludata.wordpress.com/2016/06/18/quiet/
  5. The horizontally-scrolled chart of the universe from the Planck base units: https://bbludata.wordpress.com/1-204/

How did the universe begin? And, what does it mean? Could a Quiet Expansion impact the Big Bang?

Most recent update: September 2016
WORK-IS-STILL-IN-PROGRESS
FIRST DRAFT is for the GENERAL PUBLIC.

There is a very similar work-in-progress
for the scientific-academic community

by Bruce Camber, New Orleans

With all the chaos, disinformation and uncertainty in our little world, those old penultimate questions seem quite relevant, “How did this universe and our life begin? What does it mean?” Did it come into existence, as many scientists currently believe and world-renown physicist, Stephen Hawking, answers, “…expanding exponentially in every direction, from an infinitely small, infinitely hot, infinitely dense point, creating a cosmos filled with energy and matter“? Cf. Ref. [1]

Are there any other possibilities?

Of course, there are. But here we focus on a model that has only been explored by a small group of high school people and others within their extended community.

Universe View

Planck base units are the gateway between the finite and infinite.
Each epoch of the Big Bang has a corresponding set of notations.

Frank Wilczek

In 2001 Frank Wilczek wrote a series of articles for Physics Today (link embedded  here) about the Planck base units. It took   over 100 years for the academic and  scientific community to embrace some of Max Planck’s most important work.

Couldn’t the question also be asked, “Might it be possible that the universe began with an infinitesimal length, time, mass, and temperature (and a rather small charge), then expanded like the cells of life, doubling each step of the way?”  Is our universe, in fact, highly ordered and totally relational? Of course, given the state of world affairs today, the quick answer would be “No.” Yet, if we were able to answer, “Yes,” perhaps there are things we could learn from the universe to solve some of our world’s most vexing problems.

With that goal in mind, let us begin by using the old journalistic framework:
“Who? What? Why? When? Where? And, how?”

Who is who: On one side you have the scholars of the Big Bang theory (hereinafter referred to as bbt) including many Nobel laureates, and on the other side are a few high school math and science teachers and their students. The scholars’ bbt is highly documented. It is an intellectual cornerstone within experimental and theoretical physics, cosmology, astrophysics, and even ontology. The high school work has been primarily driven by this author and it has had virtually no peer review.
What: For us to challenge the bbt appears foolhardy at best. Yet, there are many, many reasons to challenge it, but most of all because (1) it is overly complex and confusing, (2) it is not very good philosophy, (3) it is very poor psychology, and (4) possibly, it’s actually wrong about its most-basic assumptions.
Why: The first three key parts of the bbt, involving substantially less than a trillionth of a second, are based on hunches and a need to shoehorn data to support the model. If we get a better model, we might be able to beget a better life.
When: Now, today. These models are more influential than we know.
Where: Everywhere. It seems that we are so intimately connected, a change in our model, changes everything immediately. Perhaps we can impact the various manifestations of insanity within our cultures.
How: Our working premise begins with what is known as a space-time singularity, the dynamic transformational nexus between the finite and infinite where there is a complete unification of all the basic forces of nature and the Planck base units (aka Planck scale). We postulate that this unification is extended through dynamic working ratios throughout all 200+ notations from the first moment of creation to the current time and present day. We further postulate that this working premise creates an environment to build a panoply of bridges from the Planck scale to all current well-established physical theories whereby each notation is a domain for unique predictive values.

We call our very simple model the Quiet Expansion (hereinafter we use the abbreviation, QE).

To explain such a position requires a detailed analysis and comparison between the big bang (and its many facets) and all the details created within each notation of the QE (a very large horizontally-scrolled file). We are also writing it up for the academic community. That analysis titled, Quiet Expansion of the Universe, is based on this posting so there is some repetition.

Not too many people question the big bang theory (bbt). Quite obviously, we do. Yet, it was only in September 2014 did we publicly raise questions about it. Given all the work that has gone into the big bang theory over so many years, only a fool would dare challenge it.

So, such is life; each of us must sometime play the fool.

This posting is still a “very-very rough draft.” Given the depth and breadth of the foundations upon which the big bang theory (bbt) currently rests, your comments while this posting is being refined, are most welcomed. If this embedded link does not open your email browser, my address is camber (at) bblu (dot) org or click on Contact.

The key to our model is multiplication by 2, starting with the Planck base units. It begins at the nexus of transformation between the finite and the infinite, defined by the crossing lines at “0” in the first image above on the right.

When we began in December 2011, we knew nothing about those pivotal Planck calculations done in 1899 by Max Planck. We hardly knew his name. We asked everybody who seemed to know something about the Planck numbers, “Can we multiply each value by 2?” We sought out experts and quickly found the work of Prof. Dr. Frank Wilczek (at that time at MIT). With very few exceptions, it was not until Wilczek began writing a series of articles in 2001, Scaling Mt. Planck, (Physics Today), did anybody think those Planck numbers amounted to anything more than numerology.

Though it seemed that most everybody was familiar with Kees Boeke’s 1957 work (Cosmic View) using base-10, we were not. Most all our academic contacts made quick reference to it, yet were still surprised to see our base-2 chart from the Planck Length to the Observable Universe. A few suggested that to multiply by 2 was no better than multiplying by 10. Some thought it was a frivolous exercise. But because we had our geometries that went right down to that scale, we proceeded. Our work began in December 2011 by multiplying the Planck Length by 2, and then each result by 2, over and over and over again. It was straightforward, a bit tedious, but relatively simple. When we discovered that there are only 200+ doublings to get to the Age of the Universe and the Observable Universe, we couldn’t believe it. Though hard to believe, it’s true. That simple math, called “base-2 exponential notation,” is what cells do. It’s a bit like chemical bonding. Another way to envision these dynamics may well be bifurcation theory.

In December 2014 we included Planck Time within our chart. In February 2015 we included the other three Planck base units.

By the time one reaches the estimated Age of the Universe, this model has encapsulated every moment of time since the very beginning, all within 200+ “somethings” that have at various points been called: (1) clusters, (2) containers, (3) domains, (4) doublings, (5) groups, (6) layers, (7) notations, (8) ratios, (9) sets or (10) steps. The result is, by definition, an entirely-ordered universe. When we stopped looking at the numbers individually, we began to realize each was in an active relation (a ratio) with the others within each notation. Then, we began to see this multiplicity of ratios as living, dynamic relations struggling to be recognized. As long as we were consistent in using the same value structure to determine each number, these ratios became the penultimate determinants of a given reality within a given notation.

Within our web presence, Big Board-little universe, there is more background about our rather brief history.

Big-bang Theory Drowns Out Discussions

To attempt to come up to speed, to learn more about it all as quickly as possible, we’ve been using Wikipedia’s summaries. Wikipedia’s goal is to represent the best current thinking of the thought leaders within the relevant scientific communities. These scientists have lived within this theory throughout their professional careers. It is part of their intellectual being. Notwithstanding, we believe most all of their work can be absorbed within the QE. Our primary questions are about the first four and most fundamental periods which they call “Epochs.” Taken together, these four epochs represent less than a fraction-of-a-fraction of a second within the QE model. With just little tweaks, we believe most all their work within the subsequent epochs can be readily integrated.

The writers within the Wikipedia community overlap with those within these scientific communities. Wikipedia, constantly in the process of refining their writing, provides several summaries of the History of the Universe. Work based on observations and measurements has a place within the QE and our guess is that the interpretation of those observations and measurements will become richer and more informative when the QE parameters and boundary conditions are engaged.

In 1970 there were competing theories about the beginning of the universe. By 1990 the bbt had become dominant. In 2011 our little group of high school geometry people began to explore the interior structures of the tetrahedron and octahedron and that is when we found within our tilings and tessellations, just over 201 base-2 exponential notations from the Planck base units to the Age of the Universe and to the Observable Universe. That continuum appeared so simple, we first engaged it as an excellent STEM (Science-Technology-Engineering-Mathematics) tool. Yet, with further study and thought, it also seemed to challenge some of our basic commonsense assumptions about nature (the back story). As we studied our new little model, the bbt continued to solidify its dominance within the general culture; nevertheless, we started to question it. We began to believe that the actual physics of the first moments of creation might be better defined by the simple mathematics of a quiet expansion, especially the first 67 notations. Those 67 have never been recognized as such and certainly have not been discussed within academia. The great minds throughout the ages have not been aware of the 201+ base-2 notations, especially those first 67 notations. So mysterious are the 67, we began more actively to think about them and to make some postulations about their place and purpose.

Our first posting about this Quiet Expansion was a result of our naive, informal, and often idiosyncratic studies of the Planck Base Units, base-2 exponential notation, and an inherent geometry assumed to be within every doubling throughout the universe. We have moved slowly. Having backed into the Planck base units from our simple exercises in a high school geometry class, we were not at all sure of ourselves. So, after observing our results for a couple of years, we began asking the question, “Could this be a more-simple, more-inclusive model of the universe than the big bang theory?” Because we only have the beginnings of an outline of a model, we have continued our quest and continue to ask more questions, primary among them, “If space and time are finite, then what is infinite?” Throughout recorded history, the infinite has been described as perfect. So, we began thinking about perfections in mathematics and science. As a result, our first answer to that question: (1) Continuity. Simple continuity creates every manifestation of order (equations). (2) Symmetry. Simple symmetries define simple relations. Complex symmetries define complex relations. (3) Dynamics. Perhaps the best description of a dynamic moment is captured by harmonic analysis. There appears to be layers of perfection based on the interactions of these three faces of perfection.

Here it seems, is the very basis for natural law, ethics, value and more.

The QE model holds that things are simple before complex; and “everything is related to everything.” Hypothesized are simple geometries, a deep infrastructure that gives rise to the work within these leading intellectual studies of our time: combinatorics, cellular automaton, cubic close packing, bifurcation theory (and the Feigenbaum’s constants), the Langlands program, mereotopology (point-free geometry), binary operations (80-known), and scalar field theory. Here are people working on theories and constructions of the simple, yet their concepts are anything but simple.

Consider this unusual-yet-very-important concept. Within every notation, the QE model aggregates what is called “base-8 pointfree vertices” using scaling laws and dimensional analysis. That insight came from a most prominent theoretical physicist, Prof. Dr. Freeman Dyson of the Institute for Advanced Studies in Princeton (Einstein’s old hangout). There are single line entries for both the base-2 and base-8 progressions within the horizontally-scrolled chart. At the 41st notation there are 10,633,823,966,279,326,983,230,456,482,242,756,608 pointfree vertices. It takes just four vertices to make a tetrahedron. It takes six to make an octahedron. With a quintillion-quintillion vertices, a huge, possibly-quite complex, infrastructure necessarily evolves. Perhaps the base-2 simple doublings could be aggregating base-8 structures as groups or sets. Further defined by the Planck base units, in the range 41-to-60, we hypothesize that these are the domains for archetypal relations and systems.

There are 549,755,813,888 base-2 pointfree vertices at Notation 41 and 5,070,602,400,912,917,605,986,812,821,504 at Notation 104. That is more than enough groups and sets to create the diversity of atomic, chemical, and biological structures that define our universe and life. Again, there is more detailed analysis within that article for the scientific-academic community (also referenced in the header).

Here it would appear is the deep infrastructure of the universe where the simple mathematics of ratios between space, time, charge, mass and temperature create real realities within every notation. The ratios are called, the really real. Within the continuum of charge here is the so-called dark energy within notations 185 to 200 and with the continuum of mass there is the dark matter. If we ever have a chance, we’ll rename both as the deep energy and deep matter of the universe, the manifestations of really real mathematical ratios.

Within the bbt there is what is called the Quark Epoch. It generalizes 63 of the QE notations, from 41 to 104. These notations within the QE model are so foundational, this comparison to Quark Epoch is a key. Within the bbt this Quark Epoch cannot begin until the temperature is cool enough. Given the bbt’s temperature requirement, within the QE model, the Quark Epoch would not begin until up-and-around Notation 136 where the temperature has finally risen to 1.9201×1012 Kelvin. If that is the right range, as suggested by proponents of the bbt, less than a second has transpired, the universe has a diameter of about 874 square miles and a mass of about 1.896×1032 kilograms. The Sun is estimated to be 1.989×1030 kilograms. Fascinating, isn’t it?

Our naïve-but-playful question, “How can the mass of the universe within just 874 square miles be larger than our sun?”

The simple logic of the QE model causes us to stop and ponder, What is mass? Is it weight in kilograms or is it a working ratio of energy and other dimensionless constants that are expressed as weight, density, and force. This major subject is addressed further and will be a key focus for a long time.

Within the QE model from around Notations 65 to 69 is the transition from the small scale to the human scale. This “human scale” is the middle third of the 201 notations, i.e. 67-to-134. Even though two-thirds of the way through the 201 doublings, less than a second has transpired from the start.

It is all quite fascinating. And it all demands a new logic about the universe, space and time.

— most active edit area—

Let us take stock of where we are. Even though the Quark Epoch of the bbt seems to overlap and begin to become simpatico within the QE, there are fundamental logic and conceptual problems ahead.

A key question within the QE model is, “What is a notation?” All 200+ are also known as an archetype, cluster, doubling, group, layer, set, and/or step. Each word is perspectival. Each notation is dynamic, always in the process of being defined, right up to the current time within our current notation.

Space and time are local per notation and all “past” is an imprint on the universe that literally defines it beingness right now, thus there is no time asymmetry.

What does that mean? Each notation has an active role right now in defining who we are and what this universe is here and now. Each notation has an active role in defining all other notations.

Today, right now, all of these notations are actively defining the now. We are imprinting on the universe right now. The past is not past; it is an imprint on the universe. There is only the Now, only right now, only today.

Humanity or the human scale seems to be defined between notations 67-to-134, but the current notation is 200+. Therefore, these notations must be something like the archetypes of forms and functions (notations 1-to-67) that define our deeper beingness. The notations from 134-to-200 define our planetary and galactic systems and these are the notations where most of the work of the bbt physicists, cosmologists, and astrophysicists work.

In just a few more notations, between 142 and 143, the universe is at the one second mark. This measurement is most often used to determine the speed of light. Yet, as noted in earlier postings, within every notation, the multiple of the Planck length divided by the multiple of the Planck Time renders an approximation of the speed of light. Though commonsense when we see that the speed of light plays prominently in the definitions of Planck Length and Planck Time, it gives each notation a special substantiation.

The question to be answered, “What is the meaning of temperature? …within the bbt? Within the QE model, we impute that it is the total temperature throughout the area defined by the notation (or cluster, container, domain, doubling, group, layer, or step). This measurement within the Hadron Epoch within the bbt is lower than it is within the QE model. There is a natural correlation between all these numbers within the QE simply because they start with the same definitional characteristics (the Planck base units) and the evolution of those numbers using base-2 exponential notation. The ratio of length to temperature renders 7.3322+ ratio. That result is currently being analyzed, space-to-temperature or kelvin per meters.

In 1972 George Ellis and Stephen Hawking began to explore the boundary conditions that define our universe between 10-13 centimeters (elementary particles) and 1028 cm, the assumed radius of the universe. They did not approach the Planck base units which would have expanded their range to 1.616199×10−35 meters (Planck Length) and then it would have tucked them in at about 5.1942×1025 meters according to current best guesses regarding the Age of the Universe.

Earlier it was observed that the big bang is not good philosophy and it is bad psychology. Philosophy is taken as a study of first principles and systems, the universals and constants that create the boundary conditions as well as the continuity equations that bind our universe together. Since 1972, especially with the very key question about the very nature of the first microseconds, the bbt has not progressed very far. Their Planck epoch is still mysterious. It is bad psychology for that very reason. It is so disjointed, so out of touch with anything human, it de facto promotes a certain form of nihilism.

Theories should have elegance, beauty, coherence, and simplicity. Children should be able to begin to understand. And with the QE, children quickly begin to understand 2 times 2. We just have to carry it out a few more places for them.

What are the implications if the Quiet Expansion is true?
For us all:
1. The finite-infinite relation is the key and requires more study.
2. The universe is finite, quantized, and derivative. Space and time are also finite, quantized, and derivative.
3. The infinite is continuity, symmetry and harmony giving rise to order, relations and harmony.
4. There are, therefore, natural laws, ethics, and values.

For the big bang theory:
1. All the actual measurements and observational work that have gone into the big bang theory (bbt) are supported by the quiet expansion.
2. All the major theoretical constructs of the bbt including and after the Quark Epoch are supported by the quiet expansion. There are adjustments of the time scale in which things occur, yet these are minor.
3. The definitions of the Grand Unification Epoch, Inflationary Epoch, and Electroweak Epoch will be upgraded substantially.

For the Quiet Expansion (QE):
1. The continued expansion of the universe is fully supported within the quiet expansion.
2. There are just over 200 notations that define the universe.
3. These notations are all active, functional, and necessarily build on each other.
4. These notations will also be defined as:
• archetypes
• clusters
• containers
• domains
• doublings
• groups
• layers
• ratios
• sets
• steps

5. As an archetype, each notation serves specific purposes in defining the textures and substance of the universe.

The future, both short-term and long-term: Our “To Do” List.
1. Run the ratios: There is a meaningful ratio between each of the five Planck base units within each of the notations. Volunteers?
2. Double-check the numbers. Just yesterday there was a question about the Coulombs doublings. The simple mathematics of every doubling has to be correct.
3. Study the Mass” progression from 0 to 201 and intuit the meaning of mass given by just the pointfree vertices throughout the twenty notations from 50 to 70. Formulate key critical questions? What are the ratios saying?

***

Disclaimer: Our charts and discussion are our first time to make a comparative analysis between the big bang theory and our Quiet Expansion. Silly errors are inevitable. We are neophytes, not scholars, within these fields, so please point out any of our failures with logic, math, and physics. We will be most grateful.

This ends the first story about two very different models of the universe. Of course, it is a story that is to be continued.
Universe History of the Universe

Footnotes and endnotes:

The first working title of this posting was “Can A Quiet Expansion Challenge the Big Bang?” which was deemed too confrontational. The more important questions were, “How did it all begin and what does it mean?” That change was made on Friday morning, June 17, 2016.

Cf. 1 Big bang theory: The world-renown Cambridge University physicist, Stephen Hawking, is the leading spokesperson for the big bang. He has become a rock star among scientists because he has been so successful as its primary advocate. Within his May 2016 PBS-TV series, Genius, he asks rhetorically, “Where did the universe come from? The answer, as most people can tell you, is the big bang. Everything in existence, expanding exponentially in every direction,from an infinitely small, infinitely hot, infinitely dense point, creating a cosmos filled with energy and matter. But what does that really mean and where did it all begin?” His confidence also exudes from his 1988, best-selling book, A Brief History of Time: From the Big Bang to Black Holes, and even from his foundational writing in 1973 (co-authored with Cambridge colleague, George F. R. Ellis) the highly-technical book, The Large Scale Structure of Space-Time.

Are space-and-time unbounded or bounded? If bounded, is our universe a container universe? Are the Planck base units and all the dimensionless constants part of the definitions of the boundaries between the finite and the infinite?

Within the current bbt analysis gravitational waves arise from within their inflationary period. The bbt thought leaders ascribe a much faster-than-light expansion just after the big bang. And, that begs the question: What are the preconditions of superluminal events and motion? There haven’t been any answers since 1902 when Jacobus Kapteyn made his initial observations, since the 1983 “superluminal workshop” at Jodrell Bank Observatory, and since the subsequent studies of microquasars, their accretion disks and such phenomenon as magnetorotational instability. It is all a very special language, logic and reality; the observational results are well-defined; yet, the most-penetrating conclusions are pending.

Stephen Hawking
Stephen Hawking as seen in the opening of the PBS-TV series, Genius with Stephen Hawking, first aired in May 2016.

Alan Guth, MIT

This note is a result of a posting about the so-called Inflationary Epoch.
In 1978 and 1979  Alan Guth of MIT wrote groundbreaking works whereby
his concept of  The Inflationary Universe became part of the core anatomy
of the big bang theory.

This note was sent to Prof Dr. Guth via email and it was titled, Inflationary processes:

July 6, 2016

TO: Prof. Dr. Alan Guth, Victor F. Weisskopf Professor of Physics, MIT

Dear Prof. Dr. Alan:

I was born in July 1947, so you are my senior; and, I write
with admiration and respect for what you have accomplished.

There is a special confidence that one gets from affirmations
especially from being published. It seems so very eternal.

My question comes out of work done in a high school geometry
class when we ducked inside a tetrahedron, found half-sized
tetrahedrons in the four corners and an octahedron in the middle.

We then went inside that octahedron, divided each edge by 2, and found
half-sized octas in each of the six corners and the tetras in each
of the eight faces. A perfect tessellation, it was easy to continue.
In about 40 jumps within, we were down among the protons.
In another 67 we were in a singularity with the Planck base units.

Feeling a little uncomfortably tight, we quickly multiplied
those base units by 2 and in 201 notations we were lost,
but looking at ourselves from out in-and-around
the Age of the Universe and the Observable Universe.

Now, this is all happening just up river from New Orleans
Zoo, downriver from the NOLA international airport. We’re
just high school folks and the kids.

That was 2011. We rushed right by Kees Boeke, my old MIT
friend, Phil Morrison’s charge. When we included all
five Planck base units, it got very challenging.

1. Nobody talks about those 67 notations from the
fermion-proton range down to the first Planck base
units’ doublings.

“Much too small to be meaningful!”
say the kings and queens of physics.

Why? “Off with your head!” (in the spirit of Alice
in Wonderland’s Queen of Hearts).

2. Really now, if Max Planck found a path to such
small numbers (length, time, mass) and to the not
so small charge, and to an absolutely gargantuan temperature,
shouldn’t there be a way to get to them through with
a bit of simple logic and simple math?

Why not?

We’ve mapped it out in a large horizontal chart:
https://bbludata.wordpress.com/1-204/
It’s rich with information, but it could be all wet.

Any advice for us literal abstractionists?
Thanks.

Most sincerely,
-Bruce
*****************
Bruce Camber\
http://bblu.org

PS. Long ago, in 1976, I was the guest of Victor Weisskopf
at the MIT faculty club where I had arranged for a WSJ writer
to interview him for an ““A-Hed” article. It was to be about
how the chairman of the MIT physics department was involved
with the Pontifical Academy of Sciences in Rome. Though
the article was never published, Weisskopf invited me to
his home to review great artwork, some quite religious,
that challenged our understanding of space and time.

About six months later, on a trip to visit with folks in
Geneva at both CERN and the World Council of Churches,
Weisskopf arranged my first meeting with John Bell to
talk about the EPR paradox and his inequalities.

Then, in 1979, I had a display project under the dome
at 77 Massachusetts Avenue
called, “What is life?
after Schrodinger’s book of the same title. It was
an attempt to examine the first principles and answers
to the question by 77 leading, living scholars from around the world.
Jerome Wiesner buttonholed me at that time, “What’s this?”
thinking it was a right-to-life group! Such memories.

So, I am still wrestling with the same old questions!
These paragraphs from the preface of your book,
The Inflationary Universe, I enjoy:

The Inflationary Universe - Guth

Thanks. -BEC

Stephen Weinberg

While working on a project at MIT, I met Stephen Weinberg for the first time in his office at Jefferson Labs at Harvard University. That was back in 1979, just before it was announced that he, Abdus Salam, and Sheldon Glashow would share the Nobel Prize for their work on electroweak unification based on spontaneous symmetry breaking.  Weinberg’s work includes defining the  Z boson and “the amount of parity violation when mixing with electromagnetic interactions.” For more, see the Standard ModelAnd, even more…

 

Thu, Jan 1, 2015 at 3:42 PM
Subject: Planck’s Time & Length,
The First Three Minutes, and your
preface in Time in Powers of Ten

Dear Prof. Dr. Weinberg:

Unwittingly we have begun working with Planck Time.
We started with the Planck Length in 2011.

Our high school geometry classes over here in New Orleans
backed into a model of the universe using base-2 exponential
notation.  We multiplied the Planck Length and Planck Time
by 2 until we got out to the Observable Universe  and the<
Age of the Universe respectively.

Here is a link within our work on a science fair project:

https://bblu.org/

It took just 202+ notations  or doublings and it all started

because we went inside a tetrahedron, halving the edges,
connecting those vertices to discover the four half-sized
tetrahedrons in each corner and an octahedron in the middle.
We did the same with the octahedron (finding the six half-
sized octahedrons in the corners in eight tetrahedrons in
each of the faces) and we didn’t stop until we were some-

where around the Planck Length.

The fascinating thing we discovered along the way is what
we are calling “the really-real small-scale universe.” It has
a geometry and a systemic order (numbers and symmetries).
Nobody seems to know much about it although analyzed
throughout human history and called the aether (ether),
vinculum, plenum, matrix, grid, continuum, firmament and
hypostases.

If we divide this little mathematical-geometric
universe into “thirds” as the small-human-large scale,
the small-scale universe finally has some definition but
now it only takes us up to size of the fermions and protons.

What do you think? Just poppycock?   Nonsense?

If it is nonsense, please, please tell us why and we can go back to
normal and get on with our life.  If not…

Thank you.

Most sincerely,
Bruce

——————-
Bruce Camber
New Orleans

Stephen Hawking

Stephen Hawking has been the world’s leading advocate for the big bang theory. In 2012 we were just starting our rather idiosyncratic studies within this domain. Notwithstanding, if and only if the simplicity of our work begins to resonate, we would hope to receive some acknowledgement from the University of Cambridge, Department of Applied Mathematics and Theoretical Physics (DAMPT). Here is our most recent email to Prof. Dr. Stephen Hawking through his personal assistant, a graduate student, Jonathan Wood:

June 30, 2016 at 5:18 PM
References: Is is possible that a quiet expansion defuses the big bang?

Dear Jonathan (and Prof. Dr. Stephen Hawking):

On July 4 that article (link above) to which I referred you earlier this month will finally be considered a “first draft.” This model, based on a rather quiet expansion of the Planck base units using base-2 exponential notation, begins to redefine the first four epochs that define the start of the big bang theory. The Planck Epoch has become the Planck Moment; the Grand Unification Epoch has become a process and your Inflationary and Electroweak Epochs have also become processes.

Just below, I will insert our introduction from our quite-large, horizontally-scrolled chart and I will post this email within our “Letters” for our 3000+ scholars with whom we communicate around the globe.

Of course, we will inform you and the people of the DAMPT of our progress or lack of it.

I send you our best wishes for your well-being and that of all the DAMPT people,

Most sincerely,

Bruce
*************
Bruce Camber
New Orleans
http://bblu.org
************

Redefining the big bang theory through this quiet expansion of 201+ notations:
The following three questions need to be addressed by this simple mathematical model of the universe called Quiet Expansion (QE):
1. Can this quiet expansion defuse the big bang theory? The math within the QE model redefines the first four and most-key elements of the big bang theory (bbt). If it is defused and becomes an historic statement, From Lemaître to Hawking, science can move on within well-prescribed boundary conditions and known parameters. The first four “epochs” of the big bang theory can readily be subjected to redefinition. These “epochs” amount to less than a trillionth-of-a-trillionth a second.
2. Are ethics and values built into the fabric of the universe? The QE model establishes a simple continuity equation from the first moment in time through the Age of the Universe to this day and this moment. These simple mathematical constructions quickly evolve as geometrical constructions and symmetry groups. These become dynamic and harmonic. Continuity, symmetry and harmony are the foundations for a natural value equation deep-seated within the universe. Most every flavor of ethics, morals, and values can be appreciated for what they do and don’t do, and for why they are.
3. How can we more fully understand the finite-infinite relation? This finite-infinite relation is perhaps best described as a study of perfection and moments of perfection and that the geometries and mathematics of imperfection are also better defined and understood as a result.

Planck Moment: The finite-infinite relation most intimately defines the first notation and is necessarily within all notations building from the first. An infinitesimally short duration, it is the beginning that creates space and time and then extends within space and time much like the birthing process. The Planck base units are our simplest-deepest-best description of this moment as of today.

Grand Unification and the Electroweak Processes: Based on the fact that entities and things require a necessary amount of space that only becomes available from the 67th notation and above, the first 60 to 66 notations are foundational to all notations. Using the analogy of the birthing process, all the forms-and-functions, then processes-and-procedures, and then relations-and-systems prior to the actual birthing event, are the first 60 or so notations. Here that finite-infinite relation creates the foundational order, the most basic relations, and many dynamical systems prior to the uniqueness of every reasonable analogue to the birthing event.

The Grand Unification processes continue beyond the 67th notation as specific Unification processes. The electroweak processes now begin to manifest and the measurements given by the big bang theorists can be tweaked and integrated within the quiet expansion model.

Inflationary Processes: Just as there are still many many questions about cellular division, there are even more open questions within this model. However, the force, the infinitesimal amount of energy, available to this process are working ratios of the Planck base units whereby order, relations, and dynamics evolve with a perfect continuity, perfect symmetry, and a deep harmony within every sphere and basic structure. This concept was initially put forth as a philosophical orientation to life, and then it was explored in a post about numbers called,  On Constructing the Universe From Scratch (pp.5f).

Flooding the big bang theory

Although the big bang is the dominant theory of our day (and since about 1975), support for the big bang theory is not unanimous. Here we will aggregate articles, most-recent first, by people who raise questions about the theory.

August 2016: How did the universe begin? And, what does it mean? Could a Quiet Expansion impact the Big Bang?” by Bruce Camber

January 2016Are Cosmologists Fooling Themselves About The Big Bang, Dark Matter And More?” by Ethan Siegel, Brian Koberlein, Forbes Magazine, Jan 20, 2016

Feb 10, 2015  Is “Big Bang” a Big Bust? New physics theory says Yes! Lisa Zyga writing about the work of Ahmed Farag Ali and  Saurya Das.

January, 2015 “New origin of universe model pours water on Big Bang theory” Ahmed Farag Ali, a physicist at Zewail City of Science and Technology (Egypt) and Saurya Das (University of Lethbridge, Alberta Canada) reported by Zeeya MeralarXiv:1404.3093 (2014).

May 2015:  The Big Bang’s Identity Crisis, PBS-TV, Paul Halpern (homepage)

June 2004:   Big Bang Theory Busted By 33 Top Scientists, Open letter reported by was signed by:

  • Halton Arp, (died, 2013) Max-Planck-Institute Fur Astrophysik (Germany)
  • Andre Koch Torres Assis, State University of Campinas (Brazil)
  • Yuri Baryshev, Astronomical Institute, St. Petersburg State University
    (Russia)
  • Ari Brynjolfsson, (died: 2013) Applied Radiation Industries (USA)
  • Hermann Bondi, (died, 2005) Churchill College, University of Cambridge (UK)
  • Timothy Eastman, Plasmas International (USA)
  • Chuck Gallo, Superconix, Inc.(USA)
  • Thomas Gold, Cornell University (emeritus) (USA)
  • Amitabha Ghosh, Indian Institute of Technology, Kanpur (India)
  • Walter J. Heikkila, University of Texas at Dallas (USA)
  • Michael Ibison, Institute for Advanced Studies at Austin, Texas
    Earthtech.org   http://xxx.lanl.gov/abs/astro-ph/0302273
    PDF: http://supernova.lbl.gov/
  • Thomas Jarboe, University of Washington (USA)
  • Jerry W. Jensen, ATK Propulsion (USA)
  • Menas Kafatos, George Mason University (USA)
  • Eric J. Lerner, Lawrenceville Plasma Physics (USA)
  • Paul Marmet, Herzberg Institute of Astrophysics (retired) (Canada)
  • Paola Marziani, Istituto Nazionale di Astrofisica, Osservatorio, Astronomico di Padova (Italy)
  • Gregory Meholic, The Aerospace Corporation (USA)
  • Jacques Moret-Bailly, Université Dijon (retired) (France)
  • Jayant Narlikar, IUCAA(emeritus) and College de France (India, France)
  • Marcos Cesar Danhoni Neves, State University of Maringá (Brazil)
  • Charles D. Orth, Lawrence Livermore National Laboratory (USA)
  • R. David Pace, Lyon College (USA)
  • Georges Paturel, Observatoire de Lyon (France)
  • Jean-Claude Pecker, College de France (France)
  • Anthony L. Peratt, Los Alamos National Laboratory (USA)
  • Bill Peter, BAE Systems Advanced Technologies (USA)
  • David Roscoe, Sheffield University (UK)
  • Malabika Roy, George Mason University (USA)
  • Sisir Roy, George Mason University (USA)
  • Konrad Rudnicki, Jagiellonian University (Poland)
  • Domingos S.L. Soares, Federal University of Minas Gerais (Brazil)
  • John L. West, Jet Propulsion Laboratory, California Institute of
    Technology, NASA Jet Propulsion Laboratory Systems Division, Pasadena, CA 91109-8099
  • James F. Woodward, California State University, Fullerton (USA)

Additional signers:

  • Emre Isik Akdeniz University Turkey
  • Felipe de Oliveira Alves, Federal University of Minas Gerais, Brazil
  • Jean-Marc Bonnet-Bidaud, Service d’Astrophysique, CEA, France
  • Martin John Baker, Loretto School Musselburgh, UK
  • Peter J Carroll, Psychonaut Institute, UK
  • Jonathan Chambers, University of Sheffield, UK
  • Michel A. Duguay, Laval University, Canada
  • Tom van Flandern, Meta Research, USA
  • Kim George, Curtin University of Technology, Australia
  • Roger Y. Gouin, Ecole Superieure d’Electricite, France
  • R.S.Griffiths, CADAS, UK
  • D. W. Harris, L-3 Communications, USA
  • Louis Hissink, Consulting Geologist, Australia
  • Sylvan J. Hotch, The MITRE Corporation (Retired), USA
  • Lassi Hyvärinen, IBM(Ret), France
  • Joseph.B. Krieger, Brooklyn College, CUNY, USA
  • Adolf Muenker, Brane Industries, USA
  • John Murray, Sunyata Composite Ltd, UK
  • Qi Pan, Fitzwilliam College, Cambridge, UK
  • Gerald Pease, The Aerospace Corporation, USA
  • Peter F. Richiuso, NASA, KSC, USA
  • Fred Rost, University of NSW (Emeritus), Australia
  • Roger A. Rydin, University of Virginia (Emeritus), USA
  • Stefan Rydstrom, Royal Institute of Technology, Sweden
  • Hetu Sheth, Earth Sciences, Indian Institute of Technology Bombay, India
  • Eugene Sittampalam, Engineering consultant, Sri Lanka
  • Pablo Vasquez, New Jersey Institute of Technology, USA
  • Doneley Watson, IBM (ret.), USA
  • Max Whisson, University of Melbourne, Australia
  • Fred Alan Wolf, Have Brains / Will Travel, USA
  • Robert Wood, IEEE, Canada
  • Robert Zubrin, Pioneer Astronautics, USAThomas R. Love, CSU Dominguez Hills, USA
    Andrew Coles, Embedded Systems, USA
    Eit Gaastra, infinite universe researcher, The Netherlands
    Franco Selleri, Università di Bari, Dipartimento di Fisica, ItalyS.N. Arteha, Space Research Institute, Russia
    Miroslaw Kozlowski, Warsaw University (emeritus), Poland
    John Hartnett, School of Physics, University of Western Australia, AustraliaTibor Gasparik, SUNY at Stony Brook, USA
    Alexandre Losev, Bulgarian Academy of Sciences, Bulgaria
    Henry Hall, University of Manchester, UK
    José da Silva, Universidade Federal de Minas Gerais, Brazil
    Markus Rohner, Griesser AG, Switzerland
    William C. Mitchell, Institute for Advanced Cosmological Studies, USA

Also, see John G. Hartnett

July 1995 “Big Bang Bust” Andrei Linde, Stanford, reported in Wired by Rudy Rucker

1991: Is the Big Bang a Bust?  Victor J. Stenger, Colorado

1991: The Big Bang Never Happened: A Startling Refutation of the Dominant Theory of the Origin of the Universe  Eric Lerner

References:
http://www.math.columbia.edu/~woit/wordpress/?p=6921
Representation of measurements that demonstrate the contextuality-nonlocality tradeoff.
http://science.howstuffworks.com/dictionary/astronomy-terms/big-bang-theory7.htm

Since scientists first proposed the big bang theory, many people have questioned and criticized the model. Here’s a rundown on some of the most common criticisms of the big bang theory:

It violates the first law of thermodynamics, which says you can’t create or destroy matter or energy. Critics claim that the big bang theory suggests the universe began out of nothing. Proponents of the big bang theory say that such criticism is unwarranted for two reasons. The first is that the big bang doesn’t address the creation of the universe, but rather the evolution of it. The other reason is that since the laws of science break down as you approach the creation of the universe, there’s no reason to believe the first law of thermodynamics would apply.

Some critics say that the formation of stars and galaxies violates the law of entropy, which suggests systems of change become less organized over time. But if you view the early universe as completely homogeneous and isotropic, then the current universe shows signs of obeying the law of entropy.

Some astrophysicists and cosmologists argue that scientists have misinterpreted evidence like the redshift of celestial bodies and the cosmic microwave background radiation. Some cite the absence of exotic cosmic bodies that should have been the product of the big bang according to the theory.

The early inflationary period of the big bang appears to violate the rule that nothing can travel faster than the speed of light. Proponents have a few different responses to this criticism. One is that at the start of the big bang, the theory of relativity didn’t apply. As a result, there was no issue with traveling faster than the speed of light. Another related response is that space itself can expand faster than the speed of light, as space falls outside the domain of the theory of gravity.

There are several alternative models that attempt to explain the development of the universe, though none of them have as wide an acceptance as the big bang theory.

Alternative Cosmology Group, Open Letter on Cosmology, New Scientist, May 22, 2004

“The big bang today relies on a growing number of hypothetical entities, things that we have never observed — inflation, dark matter and dark energy are the most prominent examples. Without them, there would be a fatal contradiction between the observations made by astronomers and the predictions of the big bang theory. In no other field of physics would this continual recourse to new hypothetical objects be accepted as a way of bridging the gap between theory and observation. It would, at the least, raise serious questions about the validity of the underlying theory.

“But the big bang theory can’t survive without these fudge factors. Without the hypothetical inflation field, the big bang does not predict the smooth, isotropic cosmic background radiation that is observed, because there would be no way for parts of the universe that are now more than a few degrees away in the sky to come to the same temperature and thus emit the same amount of microwave radiation.

“Without some kind of dark matter, unlike any that we have observed on Earth despite 20 years of experiments, big-bang theory makes contradictory predictions for the density of matter in the universe. Inflation requires a density 20 times larger than that implied by big bang nucleosynthesis, the theory’s explanation of the origin of the light elements. And without dark energy, the theory predicts that the universe is only about 8 billion years old, which is billions of years younger than the age of many stars in our galaxy.
What is more, the big bang theory can boast of no quantitative predictions that have subsequently been validated by observation. The successes claimed by the theory’s supporters consist of its ability to retrospectively fit observations with a steadily increasing array of adjustable parameters, just as the old Earth-centered cosmology of Ptolemy needed layer upon layer of epicycles.

“Yet the big bang is not the only framework available for understanding the history of the universe. Plasma cosmology and the steady-state model both hypothesize an evolving universe without beginning or end. These and other alternative approaches can also explain the basic phenomena of the cosmos, including the abundances of light elements, the generation of large-scale structure, the cosmic background radiation, and how the redshift of far-away galaxies increases with distance. They have even predicted new phenomena that were subsequently observed, something the big bang has failed to do.

“Supporters of the big bang theory may retort that these theories do not explain every cosmological observation. But that is scarcely surprising, as their development has been severely hampered by a complete lack of funding. Indeed, such questions and alternatives cannot even now be freely discussed and examined. An open exchange of ideas is lacking in most mainstream conferences. Whereas Richard Feynman could say that “science is the culture of doubt”, in cosmology today doubt and dissent are not tolerated, and young scientists learn to remain silent if they have something negative to say about the standard big bang model. Those who doubt the big bang fear that saying so will cost them their funding.

“Even observations are now interpreted through this biased filter, judged right or wrong depending on whether or not they support the big bang. So discordant data on red shifts, lithium and helium abundances, and galaxy distribution, among other topics, are ignored or ridiculed. This reflects a growing dogmatic mindset that is alien to the spirit of free scientific inquiry.

“Today, virtually all financial and experimental resources in cosmology are devoted to big bang studies. Funding comes from only a few sources, and all the peer-review committees that control them are dominated by supporters of the big bang. As a result, the dominance of the big bang within the field has become self-sustaining, irrespective of the scientific validity of the theory.

“Giving support only to projects within the big bang framework undermines a fundamental element of the scientific method — the constant testing of theory against observation. Such a restriction makes unbiased discussion and research impossible. To redress this, we urge those agencies that fund work in cosmology to set aside a significant fraction of their funding for investigations into alternative theories and observational contradictions of the big bang. To avoid bias, the peer review committee that allocates such funds could be composed of astronomers and physicists from outside the field of cosmology.

“Allocating funding to investigations into the big bang’s validity, and its alternatives, would allow the scientific process to determine our most accurate model of the history of the universe.”

Finite time:

How old is the universe?  “13.8± billion years, within .1%”
How many seconds would that be?  435.48 quintillion seconds. Each day adds another 86,400 seconds. Each year adds approximately 31.55 million seconds